In this paper we study existence and uniqueness of solutions for a system consisting from fractional differential equations of Riemann-Liouville type subject to nonlocal Erdélyi-Kober fractional integral conditions. The existence and uniqueness of solutions is established by Banach’s contraction principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. Examples illustrating our results are also presented.
@article{bwmeta1.element.doi-10_1515_math-2015-0079, author = {Natthaphong Thongsalee and Sorasak Laoprasittichok and Sotiris K. Ntouyas and Jessada Tariboon}, title = {System of fractional differential equations with Erd\'elyi-Kober fractional integral conditions}, journal = {Open Mathematics}, volume = {13}, year = {2015}, zbl = {1339.34015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0079} }
Natthaphong Thongsalee; Sorasak Laoprasittichok; Sotiris K. Ntouyas; Jessada Tariboon. System of fractional differential equations with Erdélyi-Kober fractional integral conditions. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0079/
[1] Agarwal R.P., Zhou Y., He Y., Existence of fractional neutral functional differential equations, Comput. Math. Appl., 2010, 59, 1095-1100. | Zbl 1189.34152
[2] Ahmad B., Nieto J.J., Boundary value problems for a class of sequential integrodifferential equations of fractional order, J. Funct. Spaces Appl., 2013, Art. ID 149659, 8 pp. [WoS] | Zbl 1267.45018
[3] Ahmad B., Nieto J.J., Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions, Bound. Value Probl., 2011, 2011:36. | Zbl 1275.45004
[4] Ahmad B., Ntouyas S.K., Alsaedi A., New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Difference Equ., 2011, Art. ID 107384, 11 pp. | Zbl 1204.34005
[5] Ahmad B., Ntouyas S.K., Alsaedi A., A study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditions, , Math. Probl. Eng., 2013, Art. ID 320415, 9 pp. | Zbl 1296.34011
[6] Ahmad B., Ntouyas S.K., A fully Hadamard-type integral boundary value problem of a coupled system of fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17 , 348–360. [Crossref] | Zbl 1312.34005
[7] Ahmad B., Ntouyas S.K., Fractional differential inclusions with fractional separated boundary conditions, Fract. Calc. Appl. Anal., 2012, 15, 362-382. [Crossref] | Zbl 1279.34003
[8] Ahmad B., Ntouyas S.K., Nonlocal fractional boundary value problems with slit-strips integral boundary conditions, Fract. Calc. Appl. Anal., 2015, 18, 261-280. [Crossref] | Zbl 06413568
[9] Baleanu D., Diethelm K., Scalas E., Trujillo J.J., Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, Boston, 2012. | Zbl 1248.26011
[10] Baleanu D., Mustafa O.G., Agarwal R.P., On Lp-solutions for a class of sequential fractional differential equations, Appl. Math. Comput., 2011, 218, 2074-2081. | Zbl 1235.34008
[11] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
[12] Liu X., Jia M., Ge W., Multiple solutions of a p-Laplacian model involving a fractional derivative, Adv. Difference Equ.,2013, 2013:126.
[13] O’Regan D., Stanek S., Fractional boundary value problems with singularities in space variables, Nonlinear Dynam., 2013, 71, 641-652. [WoS]
[14] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999.
[15] Tariboon J., Ntouyas S.K., A. Singubol, Boundary value problems for fractional differential equations with fractional multi-term integral conditions, J. App. Math., 2014, Article ID 806156, 10 pp.
[16] Thiramanus P., Ntouyas S.K., Tariboon J., Existence and uniqueness results for Hadamard-type fractional differential equations with nonlocal fractional integral boundary conditions, Abstr. Appl. Anal., 2014, Article ID 902054, 9 pp. | Zbl 1305.26054
[17] Zhang L., Ahmad B., Wang G., Agarwal R.P., Nonlinear fractional integro-differential equations on unbounded domains in a Banach space, J. Comput. Appl. Math., 2013, 249, 51–56. | Zbl 1302.45019
[18] Erdélyi A., Kober H., Some remarks on Hankel transforms, Quart. J. Math., Oxford, Second Ser. 1940, 11, 212-221. [Crossref] | Zbl 66.0521.01
[19] Kalla S.L., Kiryakova V.S., An H-function generalized fractional calculus based upon compositions of Erdélyi-Kober operators in Lp; Math. Japonica, 1990, 35, 1-21.
[20] Kiryakova V., Generalized Fractional Calculus and Applications, Pitman Research Notes in Math. 301, Longman, Harlow - J. Wiley, N. York, 1994. | Zbl 0882.26003
[21] Kober H., On fractional integrals and derivatives, Quart. J. Math. Oxford, 1940, Ser. ll, 193-211. [Crossref] | Zbl 66.0520.02
[22] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993. | Zbl 0818.26003
[23] Sneddon I.N., The use in mathematical analysis of Erdélyi-Kober operators and some of their applications. In: Fractional Calculus and Its Applications, Proc. Internat. Conf. Held in New Haven, Lecture Notes in Math., 1975, 457, Springer, N. York, 37-79.
[24] Yakubovich S.B., Luchko Yu.F., The Hypergeometric Approach to Integral Transforms and Convolutions, Mathematics and its Appl. 287, Kluwer Acad. Publ., Dordrecht-Boston-London, 1994.
[25] Klimek M., On Solutions of Linear Fractional Differential Equations of a Variational Type, The Publ. Office of Czestochowa University of Technology, 2009.
[26] Malinowska A., Torres D., Introduction to the Fractional Calculus of Variations, Imperial College Press, London, 2012. | Zbl 1258.49001
[27] Kaczorek T., Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin, Heidelberg, 2011.
[28] Hristov J., A unified nonlinear fractional equation of the diffusion-controlled surfactant adsorption: Reappraisal and new solution of the Ward–Tordai problem, Journal of King Saud University – Science, 2015, DOI.org/10.1016/j.jksus.2015.03.008. [Crossref]
[29] Yang X.J., Baleanu D., Srivastava H.M., Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett.,2015, 47, 54-60. | Zbl 06477315
[30] Yan S.P., Local fractional Laplace series expansion method for diffusion equation arising in fractal heat transfer, Thermal Science, 2015, 19, Suppl. 1, 131-135.
[31] Yang X.J., Srivastava H.M., Cattani C., Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics, Romanian Reports in Physics, 2015, 67, 752-761.
[32] Ahmad B., Nieto J.J., Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 2009, 58, 1838-1843. | Zbl 1205.34003
[33] Faieghi M., Kuntanapreeda S., Delavari H., Baleanu D., LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dynam., 2013, 72, 301-309. | Zbl 1268.93121
[34] Ntouyas S.K., Obaid M., A coupled system of fractional differential equations with nonlocal integral boundary conditions, Adv. Differ. Equ, 2012, 2012:130. [Crossref]
[35] Senol B., Yeroglu C., Frequency boundary of fractional order systems with nonlinear uncertainties, J. Franklin Inst. 2013, 350, 1908-1925. [WoS]
[36] Su X., Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 2009, 22, 64-69. | Zbl 1163.34321
[37] Sun J., Liu Y., Liu G., Existence of solutions for fractional differential systems with antiperiodic boundary conditions, Comput. Math. Appl., 2012, 64, 1557-1566. [WoS] | Zbl 1268.34157
[38] Wang J., Xiang H., Liu Z., Positive solution to nonzero boundary values problem for a coupled system of nonlinear fractional differential equations, Int. J. Differ. Equ., 2010, Article ID 186928, 12 pp. | Zbl 1207.34012
[39] Granas A., Dugundji J., Fixed Point Theory, Springer-Verlag, New York, 2003. | Zbl 1025.47002