In this paper, we investigate the solution of the fractional vibration equation, where the damping term is characterized by means of the Caputo fractional derivative with the order α satisfying 0 < α < 1 or 1 < α < 2. Detailed analysis for the fundamental solution y(t) is carried out through the Laplace transform and its complex inversion integral formula. We conclude that y(t) is ultimately positive, and ultimately decreases monotonically and approaches zero for the case of 0 < α < 1, while y(t) is ultimately negative, and ultimately increases monotonically and approaches zero for the case of 1 < α < 2. We also consider the number of zeros, the maximum zero and the maximum extreme point of the fundamental solution y(t) for specified values of the coefficients and fractional order.
@article{bwmeta1.element.doi-10_1515_math-2015-0077, author = {Li-Li Liu and Jun-Sheng Duan}, title = {A detailed analysis for the fundamental solution of fractional vibration equation}, journal = {Open Mathematics}, volume = {13}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0077} }
Li-Li Liu; Jun-Sheng Duan. A detailed analysis for the fundamental solution of fractional vibration equation. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0077/
[1] B˘aleanu D., Diethelm K., Scalas E., Trujillo J.J., Fractional calculus models and numerical methods – Series on complexity, nonlinearity and chaos, World Scientific, Boston, 2012
[2] Gorenflo R., Mainardi F., Fractional calculus: integral and differential equations of fractional order. In: Carpinteri A., Mainardi F. (Eds.), Fractals and fractional calculus in continuum mechanics, Springer-Verlag, Wien/New York, 1997, pp. 223-276
[3] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 | Zbl 1092.45003
[4] Kiryakova V., Generalized fractional calculus and applications, Pitman Res. Notes in Math. Ser., Vol. 301, Longman Scientific & Technical and John Wiley & Sons, Inc., Harlow and New York, 1994
[5] Klafter J., Lim S.C., Metzler R., Fractional dynamics: recent advances, World Scientific, Singapore, 2011 | Zbl 1238.93005
[6] Mainardi F., Fractional calculus and waves in linear viscoelasticity, Imperial College, London & World Scientific, Singapore, 2010 | Zbl 1210.26004
[7] Miller K.S., Ross B., An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993 | Zbl 0789.26002
[8] Oldham K.B., Spanier J., The fractional calculus, Academic Press, New York, 1974 | Zbl 0292.26011
[9] Podlubny I., Fractional differential equations, Academic Press, San Diego, 1999
[10] Rossikhin Y.A., Shitikova M.V., Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanisms of solids, Appl. Mech. Rev., 1997, 50, 15-67 [Crossref]
[11] Koeller R.C., Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech., 1984, 51, 299-307 [Crossref] | Zbl 0544.73052
[12] Xu M.Y., Tan W.C., Representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions, Sci. China Ser. G, 2003, 46, 145-157 [Crossref]
[13] Chen W., An intuitive study of fractional derivative modeling and fractional quantum in soft matter, J. Vib. Control, 2008, 14, 1651-1657 [WoS][Crossref] | Zbl 1229.74009
[14] Scott-Blair G.W., Analytical and integrative aspects of the stress-strain-time problem, J. Sci. Instr., 1944, 21, 80-84
[15] Scott-Blair G.W., A survey of general and applied rheology, Pitman, London, 1949 | Zbl 0033.23202
[16] Bland D.R., The theory of linear viscoelasticity, Pergamon, Oxford, 1960 | Zbl 0108.38501
[17] Bagley R.L., Torvik P.J., A generalized derivative model for an elastomer damper, Shock. Vib. Bull., 1979, 49, 135-143
[18] Beyer H., Kempfle S., Definition of physically consistent damping laws with fractional derivatives, ZAMM Z. Angew. Math. Mech., 1995, 75, 623-635 | Zbl 0865.70014
[19] Achar B.N.N., Hanneken J.W., Clarke T., Response characteristics of a fractional oscillator, Physica A, 2002, 309, 275-288 | Zbl 0995.70017
[20] Li M., Lim S.C., Chen S., Exact solution of impulse response to a class of fractional oscillators and its stability, Math. Probl. Eng., 2011, 2011, ID 657839 [WoS] | Zbl 1202.34018
[21] Lim S.C., Li M., Teo L.P., Locally self-similar fractional oscillator processess, Fluct. Noise Lett., 2007, 7, L169-L179 [Crossref][WoS]
[22] Shen Y.J., Yang S.P., Xing H.J., Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative, Acta Phys. Sinica, 2012, 61, 110505-1-6
[23] Shen Y., Yang S., Xing H., Gao G., Primary resonance of Duffing oscillator with fractional-order derivative, Commun. Nonlinear Sci. Numer. Simul., 2012, 17, 3092-3100 [Crossref] | Zbl 1252.35274
[24] Naber M., Linear fractionally damped oscillator, Int. J. Difference Equ., 2010, 2010, ID197020 | Zbl 1207.34010
[25] Wang Z.H., Du M.L., Asymptotical behavior of the solution of a SDOF linear fractionally damped vibration system, Shock Vib., 2011, 18, 257-268 [WoS][Crossref]
[26] Li M., Lim S.C., Cattani C., Scalia M., Characteristic roots of a class of fractional oscillators, Adv. High Energy Phys., 2013, 2013, ID 853925 [WoS] | Zbl 1328.34007
[27] Naranjani Y., Sardahi Y., Chen Y.Q., Sun J.Q., Multi-objective optimization of distributed-order fractional damping, Commun. Nonlinear Sci. Numer. Simul., 2015, 24, 159-168 [Crossref][WoS]
[28] Li M., Li Y.C., Leng J.X., Power-type functions of prediction error of sea level time series, Entropy, 2015, 17, 4809-4837
[29] Li C.P., Deng W.H., Xu D., Chaos synchronization of the Chua system with a fractional order, Physica A, 2006, 360, 171-185
[30] Zhang W., Liao S.K., Shimizu N., Dynamic behaviors of nonlinear fractional-order differential oscillator, J. Mech. Sci. Tech., 2009, 23, 1058-1064 [Crossref]
[31] Wang Z.H., Hu H.Y., Stability of a linear oscillator with damping force of the fractional-order derivative, Sci. China Ser. G, 2010, 53, 345-352 [WoS][Crossref]
[32] Li C., Ma Y., Fractional dynamical system and its linearization theorem, Nonlinear Dynam., 2013, 71, 621-633 [WoS] | Zbl 1268.34019
[33] Yang X.J., Baleanu D., Srivastava H.M., Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett., 2015, 47, 54-60 [Crossref] | Zbl 06477315
[34] Yang X.J., Srivastava H.M., An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 2015, 29, 499-504 [Crossref][WoS]
[35] Yang X.J., Srivastava H.M., Cattani C., Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics, Rom. Rep. Phys., 2015, 67, 752-761
[36] Yang X.J., Baleanu D., Baleanu M.C., Observing diffusion problems defined on cantor sets in different coordinate systems, Therm. Sci., 2015, 19(S1), 151-156 [WoS][Crossref]
[37] Yan S.P., Local fractional Laplace series expansion method for diffusion equation arising in fractal heat transfer, Therm. Sci., 2015, 19, S131-S135 [WoS][Crossref]
[38] Duan J.S., Time- and space-fractional partial differential equations, J. Math. Phys., 2005, 46, 13504-13511 [Crossref]
[39] Duan J.S., Fu S.Z., Wang Z., Fractional diffusion-wave equations on finite interval by Laplace transform, Integral Transforms Spec. Funct., 2014, 25, 220-229 [WoS] | Zbl 1297.35270
[40] Davies B., Integral transforms and their applications, 3rd ed., Springer-Verlag, New York, 2001 | Zbl 0996.44001
[41] Duan J.S., Wang Z., Fu S.Z., The zeros of the solutions of the fractional osciliation equation, Fract. Calc. Appl. Anal., 2014, 17, 10-12 [Crossref]
[42] Duan J.S., Wang Z., Liu Y.L., Qiu X., Eigenvalue problems for fractional ordinary differential equations, Chaos Solitons Fractals, 2013, 46, 46-53 [Crossref][WoS] | Zbl 1258.34041