Computation of double Hopf points for delay differential equations
Yingxiang Xu ; Tingting Shi
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

Relating to the crucial problem of branch switching, the calculation of codimension 2 bifurcation points is one of the major issues in numerical bifurcation analysis. In this paper, we focus on the double Hopf points for delay differential equations and analyze in detail the corresponding eigenspace, which enable us to obtain the finite dimensional defining system of equations of such points, instead of an infinite dimensional one that happens naturally for delay systems. We show that the double Hopf point, together with the corresponding eigenvalues, eigenvectors and the critical values of the bifurcation parameters, is a regular solution of the finite dimensional defining system of equations, and thus can be obtained numerically through applying the classical iterative methods. We show our theoretical findings by a numerical example.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275838
@article{bwmeta1.element.doi-10_1515_math-2015-0076,
     author = {Yingxiang Xu and Tingting Shi},
     title = {Computation of double Hopf points for delay differential equations},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0076}
}
Yingxiang Xu; Tingting Shi. Computation of double Hopf points for delay differential equations. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0076/

[1] Hale J.K., Lunel S.M.V., Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. | Zbl 0787.34002

[2] Driver R.D., Ordinary and Delay Differential Equations, Springer, Berlin, 1977. | Zbl 0374.34001

[3] Bellman R., Cooke K.L., Differential-Difference Equations, Academic Press, New York, 1963. | Zbl 0105.06402

[4] Cooke K.L., Forced periodic solutions of a stable non-linear differential-difference equation, Ann. Math., 1955, (61), 381–387. | Zbl 0066.33504

[5] Hassard B.D., Kazarinoff N.D., Wan Y.-H., Theory and Application of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981. | Zbl 0474.34002

[6] Govaerts W., Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, Philadelphia, 2000. | Zbl 0935.37054

[7] Griewand A., Reddien G., The calculation of Hopf points by a direct method, IMA J. Numer. Anal. 1983, (3), 295–303. | Zbl 0521.65070

[8] Yang Z.H., Nonlinear bifurcation: Theory and Computation (in Chinese), Science Press, Beijing, 2007.

[9] Luzyanina T., Roose D., Numerical stabilty analysis and computation of Hopf bifurcation points for delay differential equations, J. Comput. Appl. Math., 1996, (72), 379–392. [WoS] | Zbl 0855.65092

[10] Khibnik A.I., Kuznetsov Yu.A., Levitin V.V., Nikolaev E.N., Continuation techniques and iterative software for bifurcation analysis of ODEs and iterated maps, Physica D, 1993, (62), 360–371. | Zbl 0784.34030

[11] Allgower E.L., Georg K., Numerical path following, Handb. Numer. Anal., 1997, (5), 3–207.

[12] Buonoa P.-L., Bélair J., Restrictions and unfolding of double Hopf bifurcation in functional differential equations, J. Differential Equations, 2003, (189), 234–266. | Zbl 1032.34068

[13] Ding Y., Jiang W., Yu P., Double Hopf bifurcation in a container crane model with delayed position feedback, Appl. Math. Comput., 2013, (219), 9270–9281. [WoS] | Zbl 1290.70010

[14] Li Y., Non-resonant double Hopf bifurcation of a class-B laser system, Appl. Math. Comput., 2014, (226), 564–574. [WoS]

[15] Li Y., Jiang W., Wang H., Double Hopf bifurcation and quasi-periodic attractors in delay-coupled limit cycle oscillators, J. Math. Anal. Appl., 2012, (387), 1114–1126. [WoS] | Zbl 1244.34095

[16] Ma S., Lu Q., Feng Z., Double Hopf bifurcation for van der Pol-Duffing oscillator with parametric delay feedback control, J. Math. Anal. Appl., 2008, (338), 993–1007. [WoS] | Zbl 1141.34044

[17] Qesmi R., Babram M.A., Double Hopf bifurcation in delay differential equations, Arab J. Math. Sci., 2014, (20), 280–301. | Zbl 1323.34084

[18] Shen Z., Zhang C., Double Hopf bifurcation of coupled dissipative Stuart-Landau oscillators with delay, Appl. Math. Comput., 2014, (227), 553–566. [WoS]

[19] Engelborghs K., Luzyanina T., Roose D., Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Softw., 2002, (280), 1-21. | Zbl 1070.65556

[20] Wage B., Normal Form Computations for Delay Differential Equations in DDE-BIFTOOL, Mater thesis, Universiteit Utrecht, 2014.

[21] Xu Y., Huang M., Homoclinic orbits and Hopf bifurcations in delay differential systems with T-B singularity, J. Differential Equations, 2008, (244), 582–598. [WoS] | Zbl 1154.34039

[22] Xu Y., Mabonzo V.D., Analysis on Takens-Bogdanov points for delay differential equations, Appl. Math. Comput., 2012, (218), 11891–11899. | Zbl 1283.34066

[23] Diekmann O., van Gils S.A., Lunel S.M.V., Walther H.-O., Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Springer, New York, 1995. | Zbl 0826.34002

[24] Otsuka K., Chen J.L., High-speed picosecond pulse generation in semiconductor lasers with incoherent optical feedback, Optics Letters, 1991, (16), 1759–1761.