Some properties of geodesic semi E-b-vex functions
Adem Kiliçman ; Wedad Saleh
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

In this study, we introduce a new class of function called geodesic semi E-b-vex functions and generalized geodesic semi E-b-vex functions and discuss some of their properties.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275987
@article{bwmeta1.element.doi-10_1515_math-2015-0074,
     author = {Adem Kili\c cman and Wedad Saleh},
     title = {Some properties of geodesic semi E-b-vex functions},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {1336.52003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0074}
}
Adem Kiliçman; Wedad Saleh. Some properties of geodesic semi E-b-vex functions. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0074/

[1] Boltyanski V., Martini H., Soltan P.S., Excursions into combinatorial geometry, Springer, Berlin, 1997. | Zbl 0877.52001

[2] Chen X., Some properties of semi-E-convex functions, Journal of Mathematical Analysis and Applications, 2002, 275, 251–262. | Zbl 1072.90561

[3] Danzer L., Grünbaum B., Klee V., Helly’s theorem and its relatives. In: V. Klee (ed.) Convexity, Proc. Sympos. Pure Math., 1963, 7, 101–180. | Zbl 0132.17401

[4] Duca D. I., Lupsa L., On the E-epigraph of an E-convex functions,Journal of Optimization Theory and Applications, 2006, 129, 341–348. | Zbl 1139.90412

[5] Fulga C., Preda V., Nonlinear programming with E-preinvex and local E-preinvex functions, European Journal of Operational Research, 2009, 192(3), 737–743. [WoS] | Zbl 1157.90537

[6] Iqbal A.,Ahmad I., Ali S., Some properties of geodesic semi-E-convex functions, Nonlinear Analysis: Theory, Method and Application,2011, 74(17), 6805–6813. | Zbl 1225.26024

[7] Iqbal A., Ali S., Ahmad I., On geodesic E-convex sets, geodesic E-convex functions and E-epigraphs, J.Optim Theory Appl., 2012, 55(1), 239–251. [WoS] | Zbl 1267.90172

[8] Jiménez M. A., Garzón G.R., Lizana A.R, Optimality conditions in vector optimization, Bentham Science Publishers, 2010. | Zbl 06616988

[9] Kiliçman A., Saleh W., A note on starshaped sets in2-dimensional manifolds without conjugate points, Journal of Function Spaces, 2014, 2014(3), Article ID 675735. [WoS] | Zbl 1296.53068

[10] Kiliçman A., Saleh W., On Geodesic Strongly E-convex Sets and Geodesic Strongly E-convex Functions, Journal of Inequalities and Applications, 2015, 2015(1), 1–10. | Zbl 1336.52003

[11] Martini H., Swanepoel K.J., Generalized convexity notions and combinatorial geometry, Gongr. Numer., 2003, 164, 65–93. | Zbl 1051.52004

[12] Martini H., Swanepoel K.J , The geometry of minkowski spaces- a survey, part ii, Expo. Math., 2004, 22,14–93. | Zbl 1080.52005

[13] Mishra S.K., Mohapatra R.N. and Youness E.A.,Some properties of semi E–b-vex functions, Applied Mathematics and Computation, 2011,217(12), 5525–5530. | Zbl 1209.26015

[14] Rapcsak T., Smooth Nonlinear Optimizatio in Rn, Kluwer Academic, 1997.

[15] Roman J. Dwilewiez, A short History of Convexity, Differential Geometry Dynamical Systems, 2009, 11, 112–129.

[16] Saleh W., Kiliçman A., On generalized s-convex functions on fractal sets, JP Journal of Geometry and Topology, 2015, 17(1), 63–82. | Zbl 1327.26017

[17] Syau Y. R., Lee E.S., Some properties of E-convex functions, Applied Mathematics Letters, 2005,18, 1074–1080. [Crossref] | Zbl 1093.90044

[18] Udrist C., Convex Funcions and Optimization Methods on Riemannian Manifolds, Kluwer Academic, 1994.

[19] Valentine F. M., Convex Subsets, McGraw-Hill Series Higher Math., McGraw-Hill, New York, 1964.

[20] Yang X. M., On E-convex set, E-convex functions and E-convex programming, Journal of Optimization Theory and Applications, 2001, 109, 699–703. | Zbl 1068.90592

[21] Youness E. A., E-convex set, E-convex functions and E-convex programming, Journal of Optimization Theory and Applications, 1999, 102, 439–450. | Zbl 0937.90082