The theory of Schur complement plays an important role in many fields, such as matrix theory and control theory. In this paper, applying the properties of Schur complement, some new estimates of diagonally dominant degree on the Schur complement of I(II)-block strictly diagonally dominant matrices and I(II)-block strictly doubly diagonally dominant matrices are obtained, which improve some relative results in Liu [Linear Algebra Appl. 435(2011) 3085-3100]. As an application, we present several new eigenvalue inclusion regions for the Schur complement of matrices. Finally, we give a numerical example to illustrate the advantages of our derived results.
@article{bwmeta1.element.doi-10_1515_math-2015-0072, author = {Feng Wang and Deshu Sun}, title = {The estimates of diagonally dominant degree and eigenvalues inclusion regions for the Schur complement of block diagonally dominant matrices}, journal = {Open Mathematics}, volume = {13}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0072} }
Feng Wang; Deshu Sun. The estimates of diagonally dominant degree and eigenvalues inclusion regions for the Schur complement of block diagonally dominant matrices. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0072/
[1] Cvetkovi K c, Lj: A new subclass of H-matrices. Appl. Math. Comput. 208(2009), 206-210. [WoS]
[2] Ikramov, K.D.: Invariance of the Brauer diagonal dominance in gaussian elimination. Moscow University Comput. Math. Cybernet. .N2/ (1989),91-94. | Zbl 0723.65013
[3] Li, B., Tsatsomeros, M.: Doubly diagonally dominant matrices. Linear Algebra Appl. 261(1997), 221-235. | Zbl 0886.15027
[4] Liu, J.Z., Huang, Z.H., Zhu, L., Huang, Z.J.: Theorems on Schur complements of block diagonally dominant matrices and their application in reducing the order for the solution of large scale linear systems. Linear Algebra Appl. 435(2011), 3085-3100. [WoS] | Zbl 1231.15017
[5] Liu, J.Z., Li, J.C., Huang, Z.H., Kong, X.: Some propertes on Schur complement and diagonal Schur complement of some diagonally dominant matrices. Linear Algebra Appl. 428(2008), 1009-1030. | Zbl 1133.15020
[6] Liu, J.Z., Huang, Z.J.: The Schur complements of -diagonally and product -diagonally dominant matrix and their disc separation. Linear Algebra Appl. 432(2010), 1090-1104. [WoS] | Zbl 1186.15016
[7] Liu, J.Z., Huang, Z.J.: The dominant degree and disc theorem for the Schur complement. Appl. Math. Comput. 215(2010), 4055-4066. [WoS] | Zbl 1189.15023
[8] Liu, J.Z., Zhang, F.Z.: Disc separation of the Schur complements of diagonally dominant matrices and determinantal bounds. SIAM J. Matrix Anal. Appl. 27(2005) 665-674. | Zbl 1107.15022
[9] Liu, J.Z., Huang, Y.Q.: The Schur complements of generalized doubly diagonally dominant matrices. Linear Algebra Appl. 378(2004), 231-244. | Zbl 1051.15016
[10] Li, Y.T., Ouyang, S.P., Cao, S.J., Wang, R.W.: On diagonal-Schur complements of block diagonally dominant matrices. Appl. Math. Comput. 216(2010), 1383-1392. [WoS] | Zbl 1193.15036
[11] Zhang, C.Y., Li, Y.T., Chen, F.: On Schur complement of block diagonally dominant matrices. Linear Algebra Appl. 414(2006), 533-546. | Zbl 1092.15023
[12] Zhang, F.Z.: The Schur complement and its applications. Springer Press, New York, 2005. | Zbl 1075.15002
[13] Demmel, J.W.: Applied numerical linear algebra. SIAM Press, Philadelphia, 1997. | Zbl 0879.65017
[14] Golub, G.H., Van Loan, C.F.: Matrix computationss. third ed., Johns Hopkins University Press, Baltimore, 1996.
[15] Kress, R.: Numerical Analysis. Springer Press, New York, 1998. | Zbl 0913.65001
[16] Xiang, S.H., Zhang, S.L.: A convergence analysis of block accelerated over-relaxation iterative methods for weak block H-matrices to partion π. Linear Algebra Appl. 418(2006), 20-32. | Zbl 1106.65028
[17] Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. SIAM Press, Philadelphia, 1994, pp. 185. | Zbl 0815.15016
[18] Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York, 1991, pp. 117. | Zbl 0729.15001
[19] Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York, 1985, pp. 301. | Zbl 0576.15001
[20] Salas, N.: Gershgorin’s theorem for matrices of operators. Linear Algebra Appl. 291(1999), 15-36. | Zbl 1018.47004