Upper and lower bounds of integral operator defined by the fractional hypergeometric function
Rabha W. Ibrahim ; Muhammad Zaini Ahmad ; Hiba F. Al-Janaby
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

In this article, we impose some studies with applications for generalized integral operators for normalized holomorphic functions. By using the further extension of the extended Gauss hypergeometric functions, new subclasses of analytic functions containing extended Noor integral operator are introduced. Some characteristics of these functions are imposed, involving coefficient bounds and distortion theorems. Further, sufficient conditions for subordination and superordination are illustrated.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275989
@article{bwmeta1.element.doi-10_1515_math-2015-0071,
     author = {Rabha W. Ibrahim and Muhammad Zaini Ahmad and Hiba F. Al-Janaby},
     title = {Upper and lower bounds of integral operator defined by the fractional hypergeometric function},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0071}
}
Rabha W. Ibrahim; Muhammad Zaini Ahmad; Hiba F. Al-Janaby. Upper and lower bounds of integral operator defined by the fractional hypergeometric function. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0071/

[1] Mandelbrot B.B., Van Ness J.W., Fractional Brownian motions, fractional noises and applications, SIAM review, 1968, 10, 422-437. | Zbl 0179.47801

[2] Arovas D., Schrieffer J.R., Wilczek F., Fractional statistics and the quantum Hall effect, Physical review letters, 1984, 53, 722.

[3] Wilczek F., Quantum mechanics of fractional-spin particles, Physical review letters, 1982, 49, 957.

[4] Baillie R.T., Long memory processes and fractional integration in econometrics, Journal of Econometrics, 1996, 73, 5-59. | Zbl 0854.62099

[5] He J.-H., Approximate analytical solution for seepage flow with fractional derivatives in porous media, Computer Methods in Applied Mechanics and Engineering, 1998, 167 57-68. | Zbl 0942.76077

[6] Hilfer R., et al., Applications of fractional calculus in physics, World Scientific, 2000. [WoS] | Zbl 0998.26002

[7] Baleanu D.,et al., Fractional Calculus: Models and Numerical Methods, World Scientific, 2012 | Zbl 1248.26011

[8] Yang X.-J., Advanced local fractional calculus and its applications, World Science, New York, NY, USA, 2012.

[9] Wu G.-C., Baleanu D., Discrete fractional logistic map and its chaos, Nonlinear Dynamics, 2014, 75, 283-287. [WoS] | Zbl 1281.34121

[10] Chen F.L., A review of existence and stability results for discrete fractional equations, Journal of Computational Complexity and Applications, 2015, 1, 22-53.

[11] Li M., Fractal time series- a tutorial review, Mathematical Problems in Engineering, 2010, 2010 1-26. | Zbl 1191.37002

[12] Yang X. J.,et al., Fractal boundary value problems for integral and differential equations with local fractional operators, Thermal Science, 2015, DOI: 0354-98361300103Y. [WoS]

[13] Atici F., Eloe P., Initial value problems in discrete fractional calculus, Proceedings of the American Mathematical Society, 2009, 137, 981-989 | Zbl 1166.39005

[14] Yang X.-J., Local Fractional Functional Analysis & Its Applications, Asian Academic Publisher Limited Hong Kong, 2011

[15] Ibrahim R.W., On generalized Hyers-Ulam stability of admissible functions, Abstract and Applied Analysis, 2012, 2012, 1-10. [WoS] | Zbl 1237.39033

[16] Ibrahim R.W., Modified fractional Cauchy problem in a complex domain, Advances in Difference Equations, 2013, 2013, 1-10.

[17] Ibrahim R.W., Jahangiri J., Boundary fractional differential equation in a complex domain, Boundary Value Problems 2014, 2014, 1-11. | Zbl 1320.34122

[18] Ibrahim R.W., Sokol J., On a new class of analytic function derived by fractional differential operator, Acta Mathematica Scientia, 2014, 34B(4), 1-10. [Crossref][WoS]

[19] Ibrahim R.W., Fractional Cauchy problem in sense of the complex Hadamard operators, Mathematics Without Boundaries, Springer, 2014, 259-272. | Zbl 1318.30088

[20] Ibrahim R.W., Studies on generalized fractional operators in complex domain, Mathematics Without Boundaries, Springer, 2014, 273-284. | Zbl 1318.26010

[21] Branges L., A proof of the Bieberbach conjecture, Acta Math., 1985, 154, 137–152. [WoS] | Zbl 0573.30014

[22] Srivastava H. M., et al., Generating functions for the generalized Gauss hypergeometric functions, Appl. Math. Comput., 2014, 247, 348–352. [WoS] | Zbl 1338.33015

[23] Luo M. J., et al., Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput., 2014, 248, 631–651. [WoS] | Zbl 1338.33006

[24] Srivastava H. M., Choi J., Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York. 2012. | Zbl 1239.33002

[25] Agarwal P., et al., Extended Riemann-Liouville fractional derivative operator and its applications, J. Nonlinear Sci. Appl., 2015, 8, 451–466. | Zbl 1329.26010

[26] S. Ruscheweyh, New criteria for univalent functions, Proceedings of the American Mathematical Society, 1975, 49, 109–115. [WoS] | Zbl 0303.30006

[27] Noor K. L., On new classes of integral operators, Journal of Natural Geometry, 1999, 16, 71–80. | Zbl 0942.30007

[28] Noor K. L., Integral operators defined by convolution with hypergeometric functions, Appl. Math. Comput., 2006, 182, 1872–1881. | Zbl 1110.45008

[29] Ibrahim R. W., Darus M., New classes of analytic functions involving generalized Noor integral operator, Journal of Inequalities and Applications, 2008, 390435, 1–14. | Zbl 1153.30011

[30] Miller S. S., Mocanu P. T., Differential Subordinations, Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.

[31] Miller S. S., Mocanu P. T., Subordinants of differetial superordinations, Complex Var. Theory Appl., 2003, 48 (10), 815–826. | Zbl 1039.30011

[32] Brickman L., like analytic functions, Bulletin of the American Mathematical Society, 1973, 79 (3), 555–558. [Crossref] | Zbl 0273.30010

[33] Ruscheweyh St., A subordination theorem for like functions, J. London Math. Soc., 1976, 2(13), 275–280.[Crossref] | Zbl 0328.30007

[34] Bulboaca T., Classes of first-order differential superordinations, Demonstratio Mathematica, 2002, 35(2), 287–292. | Zbl 1010.30020

[35] Ravichandran V., Jayamala M., On sufficient conditions for Caratheodory functions, Far East Journal of Mathematical Sciences, 2004, 12, 191–201. | Zbl 1074.30011

[36] Ali R., et al., Differential sandwich theorems for certain analytic functions, Far East Journal of Mathematical Sciences, 2005, 15, 87–94. | Zbl 1074.30022

[37] Ibrahim R. W., et al., Third-order differential subordination and superordination involving a fractional operator, Open Mathematics, 2015, To appear.

[38] Yang X. -J., et al., Local Fractional Integral Transforms and Their Applications, Elsevier, 2015.

[39] Yang X. J., Srivastava H. M., Cattani C., Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics, Romanian Reports in Physics, 2015, 67(3), 752-761.

[40] Yang X. J., Machado J. T., Hristov J., Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow. Nonlinear Dynamics, 2015, 1-5.

[41] Yang X. J., Srivastava H. M., An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives. Communications in Nonlinear Science and Numerical Simulation, (2015), 29(1), 499-504. [WoS]