The third-order differential subordination and the corresponding differential superordination problems for a new linear operator convoluted the fractional integral operator with the Carlson-Shaffer operator, are investigated in this study. The new operator satisfies the required first-order differential recurrence (identity) relation. This property employs the subordination and superordination methodology. Some classes of admissible functions are determined, and these significant classes are exploited to obtain fractional differential subordination and superordination results. The new third-order differential sandwich-type outcomes are investigated in subsequent research.
@article{bwmeta1.element.doi-10_1515_math-2015-0068, author = {Rabha W. Ibrahim and Muhammad Zaini Ahmad and Hiba F. Al-Janaby}, title = {Third-order differential subordination and superordination involving a fractional operator}, journal = {Open Mathematics}, volume = {13}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0068} }
Rabha W. Ibrahim; Muhammad Zaini Ahmad; Hiba F. Al-Janaby. Third-order differential subordination and superordination involving a fractional operator. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0068/
[1] Alexander J. W., Functions which map the interior of the unit circle upon simple regions, Ann. of Math., 1915, 17, 12–22. [Crossref] | Zbl 45.0672.02
[2] Libera R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc., 1965, 16, 755–758. [Crossref] | Zbl 0158.07702
[3] Bernardi S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc., 1969, 135, 429–446. | Zbl 0172.09703
[4] Miller S. S., Mocanu P. T., Reade M. O., Starlike integral operators, Pacific J. Math., 1978, 79, 157–168. | Zbl 0398.30007
[5] Miller S. S., Mocanu P. T., Classes of univalent integral operators, J. Math. Anal. Appl., 1991, 157, 147–165. [Crossref] | Zbl 0729.30011
[6] Singh R., On Bazilevic functions, Proc. Amer. Math. Soc., 1973, 18 261–271. | Zbl 0262.30014
[7] Pascu N. N., Pescar V., On integral operators of Kim-Merkes and Pfaltz-graff, Mathematica (Cluj), 1990, 2, 185–192. | Zbl 0761.30011
[8] Pescar V., Breaz D., Some integral operators and their univalence, Acta Univ. Apulensis Math., Inform. 2008, 15, 147–152. | Zbl 1199.30094
[9] Breaz D., Breaz N., Srivastava H. M., An extension of the univalent condition for a family of integral operators, Appl. Math. Lett., (2009), 22, 41–44. [WoS][Crossref] | Zbl 1163.30304
[10] Breaz D., Darus M., Breaz N., Recent Studies on Univalent Integral Operators, Alba Iulia: Aeternitas, 2010. | Zbl 1207.41012
[11] Darus M., Ibrahim R. W., On subclasses of uniformly Bazilevic type functions involving generalized differential and integral operators, FJMS, 2009, 33, 401–411. | Zbl 1168.30306
[12] Darus M., Ibrahim R. W., On inclusion properties of generalized integral operator involving Noor integral, FJMS, 2009, 33, 309–321. | Zbl 1168.30305
[13] Hernandez R., Prescribing the preschwarzian in several complex variables, Annales Academiae Scientiarum Fennicae Mathematica, 2011, 36, 331–340. [Crossref][WoS] | Zbl 1227.32021
[14] Ong K. W., Tan S. L., Tu Y. E., Integral operators and univalent functions, Tamkang Journal of Mathematics, 2012, 43(2), 215–221. | Zbl 1255.30029
[15] Goluzin G. M., On the majorization principle in function theory (Russian). Dokl. Akad. Nauk. SSSR, 1953, 42, 647–650.
[16] Suffridge T. J., Some remarks on convex maps of the unit disk. Duke Math. J., 1970, 37, 775–777. | Zbl 0206.36202
[17] Robinson R. M., Univalent majorants, Trans. Amer. Math. Soc., 1947, 61, 1–35. [Crossref]
[18] Hallenbeck D. J., Ruscheweyh S., Subordination by convex functions, Proc. Amer. Math. Soc., 1975, 52, 191–195. [Crossref] | Zbl 0311.30010
[19] Miller S.S., Mocanu P.T., Differential subordinations and univalent function, Michig. Math. J., 1981, 28, 157–171. [Crossref] | Zbl 0439.30015
[20] Miller S.S., Mocanu P.T., Differential subordinations and inequalities in the complex plane, J. Diff. Eqn., 1987, 67, 199–211. | Zbl 0633.34005
[21] Miller S.S., Mocanu P.T., The theory and applicatins of second-order differential subordinations, Studia Univ. Babes-Bolyai, math., 1989, 34, 3–33.
[22] Miller S. S., Mocanu P. T., Differential Subordinations, Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
[23] Miller S. S., Mocanu P. T., Subordinants of differetial superordinations, Complex Var. Theory Appl., 2003, 48, 815–826. | Zbl 1039.30011
[24] Bulboac Ma T., Differential subordinations and superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[25] Baricz A., Deniz E., Caglar M., Orhan H., Differential subordinations involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc., DOI: 10.1007/s40840-014-0079-8. [WoS][Crossref] | Zbl 1316.30010
[26] Cho N. E., Bilboaca T., Srivastava H. M., A general family of integral operators and associated subordination and superordination properties of some special analytic function classes, Appl. Math. Comput., 2012, 219, 2278–2288. [WoS] | Zbl 1293.30027
[27] Kuroki K., Srivastava H. M., Owa S., Some applications of the principle of differential, Electron. J. Math. Anal. Appl., 2013, 1 (50), 40–46.
[28] Xu Q.-H., Xiao H.-G., Srivastava H. M., Some applications of differential subordination and the Dziok-Srivastava convolution operator, Appl. Math. Comput., 2014, 230, 496–508.
[29] Ali R. M., Ravichandran V., Seenivasagan N., Differential subordination and superordination of analytic functions defined by the Dziok-Srivastava operator, J. Franklin Inst., 2010, 347, 1762–1781. [WoS] | Zbl 1204.30008
[30] Ali R. M., Ravichandran V., Seenivasagan N., On Subordination and superordination of the multiplier transformation for meromorphic functions, Bull. Malays. Math. Sci. Soc., 2010, 33, 311–324. | Zbl 1189.30009
[31] Ponnusamy S., Juneja O. P., Third-order differential inequalities in the complex plane, Current Topics in Analytic Function Theory, World Scientific, Singapore, London, 1992. | Zbl 0991.30012
[32] Antonion J. A., Miller S. S., Third-order differential inequalities and subordinations in the complex plane, Complex Var. Theory Appl., 2011, 56, 439–454. | Zbl 1220.30035
[33] Jeyaraman M. P., Suresh T. K., Third-order differential subordination of analysis functions, Acta Universitatis Apulensis, 2013, 35, 187–202. | Zbl 1340.30103
[34] Tang H., Srivastiva H. M., Li S., Ma L., Third-order differential subordinations and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava Operator, Abstract and Applied Analysis, 2014, 1–11. [WoS][Crossref]
[35] Tang H., Deniz E., Third-order differential subordinations results for analytic functions involving the generalized Bessel functions, Acta Math. Sci., 2014, 6, 1707–1719. [WoS][Crossref] | Zbl 1340.30080
[36] Tang H., Srivastiva H. M., Deniz E., Li S., Third-order differential superordination involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 2014, 1–22. [WoS]
[37] Farzana H. A., Stephen B. A., Jeyaraman M. P., Third-order differential subordination of analytic function defined by functional derivative operator, Annals of the Alexandru Ioan Cuza University - Mathematics, 2014, 1–16.
[38] B. C. Carlson and D. B. Shaffer,Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 1984, 15, 737–745. | Zbl 0567.30009
[39] Machado J. T., Discrete-time fractional-order controllers, Fractional Calculus and Applied Analysis, 2001, 4, 47–66. | Zbl 1111.93307
[40] Pu Y.-F., Zhou J.-L., Yuan X., Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement, Image Processing, IEEE Transactions on, 2010, 19, 491–511. [WoS]
[41] Jalab H. A., Ibrahim R. W., Fractional Conway polynomials for image denoising with regularized fractional power parameters, J. Math. Imaging Vis., 2015, 51, 442–450. [Crossref][WoS] | Zbl 1331.94021
[42] Jalab H A, Ibrahim R. W., Fractional Alexander polynomials for image denoising, Signal Processing, 2015, 107, 340–354.
[43] Wu G.C., Baleanu D., Zeng S.D., Deng Z.G., Discrete fractional diffusion equation, Nonlinear Dynamics, 2015, 80, 1–6. | Zbl 06496111