Weak amenability for the second dual of Banach modules
Fatemeh Anousheh ; Davood Ebrahimi Bagha ; Abasalt Bodaghi
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

Let A be a Banach algebra, E be a Banach A-bimodule and Δ E → A be a bounded Banach A-bimodule homomorphism. It is shown that under some mild conditions, the weakΔ''-amenability of E'' (as an A''-bimodule) necessitates weak Δ-amenability of E (as an A-bimodule). Some examples of weak-amenable Banach modules are provided as well.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275913
@article{bwmeta1.element.doi-10_1515_math-2015-0063,
     author = {Fatemeh Anousheh and Davood Ebrahimi Bagha and Abasalt Bodaghi},
     title = {Weak amenability for the second dual of Banach modules},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0063}
}
Fatemeh Anousheh; Davood Ebrahimi Bagha; Abasalt Bodaghi. Weak amenability for the second dual of Banach modules. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0063/

[1] Amini M., Module amenability for semigroup algebras, Semigroup Forum, 69 (2004), 243–254. | Zbl 1059.43001

[2] Bodaghi A., n-homomorphism amenability, Proc. Rom. Aca., Series A, 14, No. 2 (2013), 101–105.

[3] Bodaghi A., Eshaghi Gordji M., Medghalchi A.R., A generalization of the weak amenability of Banach algebras, Banach J. Math. Anal., 3, no. 1 (2009), 131–142. | Zbl 1163.46034

[4] Bodaghi A., Ettefagh M., Eshaghi Gordji M., Medghalchi A.R., Module structures on iterated duals of Banach algebras, An. St. Univ. Ovidius Constanta.,18 (1) (2010), 63–80. | Zbl 1212.46068

[5] Dales H. G., Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000. | Zbl 0981.46043

[6] Dales H. G., Ghahramani F., Grønbæk N., Derivations into iterated duals of Banach algebras, Studia Math., 128 (1998), 19–54. | Zbl 0903.46045

[7] Ebrahimi Bagha D., Amini M., Amenability for Banach modules, CUBO, A Mathematical Journal, 13 (2011), 127–137. | Zbl 1258.46020

[8] Eshaghi Gordji M., Filali M., Weak amenability of the second dual of a Banach algebra, Studia Math., 182 (2007), 205-213. | Zbl 1135.46027

[9] Ettefagh M., The third dual of a Banach algebra, Studia. Sci. Math. Hung., 45 (2008), 1–11. [WoS] | Zbl 1174.46022

[10] Ghahramani F., Laali J., Amenability and topological centres of the scond duals of Banach algebras, Bull. Astral. Math. Soc., 65 (2002), 191–197. | Zbl 1029.46116

[11] Ghahramani F., Loy R. J., Generalized notions of amenability, J. Funct. Anal., 208 (2004), 229–260. [WoS] | Zbl 1045.46029

[12] Ghahramani F., Loy R. J., Willis G. A., Amenability and weak amenability of second conjugate Banach algebaras, Proc. Amer. Math. Soc., 124 (1996), 1489–1497. | Zbl 0851.46035

[13] Grønbæk N., Weak and cyclic amenability for non-commutative Banach algebras, Proc. Edinburgh Math. Soc., 35 (1992), 315–328. | Zbl 0760.46043

[14] Johnson B. E., Cohomology of Banach algebras, Mem. Amer. Math. Soc., 127, 1972. | Zbl 0246.46040

[15] Johnson B. J., Weak amenability of group algebras, Bull. London Math. Soc., 23 (1991), 281–284. | Zbl 0757.43002

[16] Medghalchi A. R., Yazdanpanah T., n-weak amenability and strong double limit property, Bull. Korean Math. Soc., 42 (2005), 359–367. | Zbl 1083.46027

[17] Pym J. S., The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc., 15 (1965), 84–104. | Zbl 0135.35503

[18] Runde V., Lectures on amenability, in: Lecture Notes in Mathematic, vol. 1774, Springer-Verlag, Berlin, 2002. | Zbl 0999.46022

[19] Sangani-Monfared M., Character amenability of Banach algebras, Math. Proc. Camb. Phil. Soc., 144 (2008), 697–706. | Zbl 1153.46029

[20] Watanabe S., A Banach algebra which is an ideal in the second dual algebra, Sci. Rep. Niigata Univ. ser., 11 (1974), 95–101. | Zbl 0359.46034