A finite difference method for fractional diffusion equations with Neumann boundary conditions
Béla J. Szekeres ; Ferenc Izsák
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

A finite difference numerical method is investigated for fractional order diffusion problems in one space dimension. The basis of the mathematical model and the numerical approximation is an appropriate extension of the initial values, which incorporates homogeneous Dirichlet or Neumann type boundary conditions. The wellposedness of the obtained initial value problem is proved and it is pointed out that each extension is compatible with the original boundary conditions. Accordingly, a finite difference scheme is constructed for the Neumann problem using the shifted Grünwald–Letnikov approximation of the fractional order derivatives, which is based on infinite many basis points. The corresponding matrix is expressed in a closed form and the convergence of an appropriate implicit Euler scheme is proved.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275973
@article{bwmeta1.element.doi-10_1515_math-2015-0056,
     author = {B\'ela J. Szekeres and Ferenc Izs\'ak},
     title = {A finite difference method for fractional diffusion equations with Neumann boundary conditions},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {1327.65215},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0056}
}
Béla J. Szekeres; Ferenc Izsák. A finite difference method for fractional diffusion equations with Neumann boundary conditions. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0056/

[1] Treumann, R. A., Theory of super-diffusion for the magnetopause, Geophys. Res. Lett., 1997, 24, 1727–1730 [Crossref]

[2] Edwards, A. M., Phillips, R. A., Watkins, N. W., Freeman, M. P., Murphy, E. J., Afanasyev, V., et al., Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer, 2007, Nature, 449, 1044–1048 [WoS]

[3] Benson, D. A., Wheatcraft, S. W., Meerschaert, M. M., Application of a fractional advection-dispersion equation, Water Resour. Res., 2000, 36, 1403–1412 [Crossref]

[4] Podlubny, I., Fractional differential equations, Academic Press Inc., San Diego, CA, 1999 | Zbl 0924.34008

[5] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Mod. Meth. Appl. Sci., 2013, 23, 493–540 [Crossref] | Zbl 1266.26020

[6] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K., Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints, SIAM Rev., 2012, 54, 667–696 [Crossref][WoS] | Zbl 06122544

[7] Meerschaert, M. M., Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 2004, 172, 65–77 | Zbl 1126.76346

[8] Deng, W. H., Chen, M., Efficient numerical algorithms for three-dimensional fractional partial diffusion equations, J. Comp. Math., 2014, 32, 371–391 [Crossref] | Zbl 1313.65247

[9] Tadjeran, C., Meerschaert, M. M., A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., 2007, 220, 813–823 | Zbl 1113.65124

[10] Tadjeran, C., Meerschaert, M. M., Scheffler, H. P., A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 2006, 213, 205–213 | Zbl 1089.65089

[11] Tian, W., Zhou, H., Deng, W., A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp., 2015, 84, 1703–1727 [Crossref] | Zbl 1318.65058

[12] Zhou, H., Tian, W., Deng, W., Quasi-compact finite difference schemes for space fractional diffusion equations, J. Sci. Comput., 2013, 56, 45–66 [Crossref] | Zbl 1278.65130

[13] Atangana, A., On the stability and convergence of the time-fractional variable order telegraph equation, J. Comput. Phys., 2015, 293, 104–114 [WoS]

[14] Bhrawy, A. H., Zaky, M.A., Van Gorder, R.A., A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation, Numer. Algorithms, 2015 (in press), DOI: 10.1007/s11075-015-9990-9 [Crossref] | Zbl 1334.65166

[15] Nochetto, R., Otárola, E., Salgado, A., A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis, Found. Comput. Math., 2014, 1–59 | Zbl 06461818

[16] Huang, J., Nie, N., Tang, Y., A second order finite difference-spectral method for space fractional diffusion equations, Sci. Chin. Math., 2014, 57, 1303–1317 [Crossref] | Zbl 1305.65185

[17] Doha, E., Bhrawy, A., Ezz-Eldien, S., Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method, Cent. Eur. J. of Phys., 2013, 11, 1494–1503 [WoS] | Zbl 1291.65207

[18] Bhrawy, A. H., Zaky, M. A., A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 2015, 281, 876–895

[19] Bhrawy, A. H., Zaky, M.A., Machado, J. T., Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation, J. Vib. Control, 2015 (in press), DOI: 10.1177/107754631456683 [Crossref]

[20] Bhrawy, A. H., Baleanu, D., A spectral Legendre-Gauss-Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients, Rep. Math. Phys., 2013, 72, 219–233 [WoS][Crossref] | Zbl 1292.65109

[21] Xu, S., Ling, X., Cattani, C., Xie, G., Yang, X., Zhao, Y., Local fractional Laplace variational iteration method for nonhomogeneous heat equations arising in fractal heat flow, Math. Probl. Eng., 2014, Art. ID 914725 [WoS]

[22] Yang, A., Li, J., Srivastava, H. M., Xie, G., Yang, X., Local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivative, Discrete Dyn. Nat. Soc., 2014, Art. ID 365981 [WoS]

[23] Ilic, M., Liu, F., Turner, I., Anh, V., Numerical approximation of a fractional-in-space diffusion equation. I, Fract. Calc. Appl. Anal., 2005, 8, 323–341 | Zbl 1126.26009

[24] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006 | Zbl 1092.45003

[25] Miller, K. S., Ross, B., An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons Inc., New York, 1993 | Zbl 0789.26002

[26] Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993 | Zbl 0818.26003

[27] Atangana, A., Secer, A., A note on fractional order derivatives and table of fractional derivatives of some special functions, Abstr. Appl. Anal., 2013, DOI:10.1155/2013/27968 [Crossref] | Zbl 1276.26010

[28] Hilfer, R., Threefold Introduction to Fractional Derivatives, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

[29] Yang, Q., Liu, F., Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 2010, 34, 200–218 [WoS][Crossref] | Zbl 1185.65200

[30] Shen, S., Liu, F., Anh, V., Turner, I., The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation, IMA J. Appl. Math., 2008, 73, 850–872 [WoS] | Zbl 1179.37073

[31] Adams, R. A., Fournier, J. J. F., Sobolev spaces, Academic Press, Amsterdam, 2003 | Zbl 1098.46001

[32] Gradshteyn, I. S., Ryzhik, I. M., Table of integrals, series, and products, 6th ed., Academic Press Inc., San Diego, CA, 2000 | Zbl 0981.65001

[33] Wang, H. and Basu, T. S., A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput., 2012, 34, A2444–A2458 [WoS]

[34] Bonito, A., Pasciak, J. E., Numerical Approximation of Fractional Powers of Elliptic Operators, Math. Comp., 2015, 84, 2083–2110 [Crossref] | Zbl 1331.65159

[35] Szymczak, P., Ladd, A. J. C., Boundary conditions for stochastic solutions of the convection-diffusion equation, Phys. Rev. E, 2003, 68, 12

[36] Baeumer, B., Kovács, M., Meerschaert, M. M., Numerical solutions for fractional reaction-diffusion equations, Comput. Math. Appl., 2008, 55, 2212–2226 [Crossref] | Zbl 1142.65422

[37] Evans, L. C., Partial differential equations, American Mathematical Society, Providence, RI, 1998 | Zbl 0902.35002