Results for Mild solution of fractional coupled hybrid boundary value problems
Dumitru Baleanu ; Hossein Jafari ; Hasib Khan ; Sarah Jane Johnston
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

The study of coupled system of hybrid fractional differential equations (HFDEs) needs the attention of scientists for the exploration of its different important aspects. Our aim in this paper is to study the existence and uniqueness of mild solution (EUMS) of a coupled system of HFDEs. The novelty of this work is the study of a coupled system of fractional order hybrid boundary value problems (HBVP) with n initial and boundary hybrid conditions. For this purpose, we are utilizing some classical results, Leray–Schauder Alternative (LSA) and Banach Contraction Principle (BCP). Some examples are given for the illustration of applications of our results.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275976
@article{bwmeta1.element.doi-10_1515_math-2015-0055,
     author = {Dumitru Baleanu and Hossein Jafari and Hasib Khan and Sarah Jane Johnston},
     title = {Results for Mild solution of fractional coupled hybrid boundary value problems},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0055}
}
Dumitru Baleanu; Hossein Jafari; Hasib Khan; Sarah Jane Johnston. Results for Mild solution of fractional coupled hybrid boundary value problems. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0055/

[1] Ahmad B., Ntouyas S.K., Alsaedi A.: Existence results for a system of coupled hybrid fractional differential equations, Sci. World. J., 2014, Article ID 426438, 6 pages [WoS]

[2] Anastassiou G.A.: On right fractional calculus, Chaos, Solitons and Fractals, 2009, 42(1), 365-376 [WoS][Crossref] | Zbl 1198.26006

[3] Atangana A.: Convergence and stability analysis of a novel iteration method for fractional Biological population equation, Neural Comput. Appl., 2014, 25(5), 1021-1030 [WoS][Crossref]

[4] Chai G., Hu S.: Existence of positive solutions for a fractional high-order three-point boundary value problem, Adv. Differ. Equ.-NY, 2014, 90 [Crossref]

[5] Herzallah M.A.E., Baleanu D.: On Fractional order hybrid differential equations, Abstr. Appl. Anal., 2014, Article ID 389386, 7 pages

[6] Hilfer (Ed.), R.: Application of fractional calculus in physics, W. Sci. Publishing Co. Singapore, 2000

[7] Houas M., Dahmani Z.: New results for a coupled system of fractional differential equations, Facta Universitatis, Ser. Math. Inform., 2013, Vol. 28(2), 133-150 | Zbl 06451386

[8] Khan H., Alipour M., Khan R.A., Tajadodi H., Khan A.: On approximate solution of fractional order Logistic equations by operational matrices of Bernstein polynomials, J. Math. Comp. Sci., 2014, 14 (2015), 222-232

[9] Khan R.A., Khan A., Samad A., Khan H.: On existence of solutions for fractional differential equations with P-Laplacian operator, J. Fract. Calc. Appl., 2014, Vol. 5(2) July, pp. 28-37

[10] Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and applications of fractional differential equations, 24, North-Holland Mathematics Studies, Amsterdam, 2006 | Zbl 1092.45003

[11] Yang Y.J., Baleanu D., Yang X.J.: A Local fractional variational iteration method for Laplace equation with in local fractional operators, Abstr. Appl. Anal., 2013, Article ID 202650, 6 pages | Zbl 1273.65158

[12] Zhao C.G., Yang A.M., Jafari H., Haghbin A.: The Yang-Laplace transform for solving the IVPs with local fractional derivative, Abstr. Appl. Anal., 2014, Article ID 386459, 5 pages