In this paper, we introduce the definition of restrictable Lie-Rinehart algebras, the concept of restrictability is by far more tractable than that of a restricted Lie-Rinehart algebra. Moreover, we obtain some properties of p-mappings and restrictable Lie-Rinehart algebras. Finally, we give some sufficient conditions for the commutativity of quasi-toral restricted Lie-Rinehart algebras and study how a quasi-toral restricted Lie-Rinehart algebra with zero center and of minimal dimension should be.
@article{bwmeta1.element.doi-10_1515_math-2015-0049, author = {Bing Sun and Liangyun Chen}, title = {Restricted and quasi-toral restricted Lie-Rinehart algebras}, journal = {Open Mathematics}, volume = {13}, year = {2015}, zbl = {06508438}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0049} }
Bing Sun; Liangyun Chen. Restricted and quasi-toral restricted Lie-Rinehart algebras. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0049/
[1] J. Casas, Obstructions to Lie-Rinehart Algebra Extensions. Algebra Colloq. 18 (2011), 83-104. [WoS] | Zbl 1237.17020
[2] J. Casas, M. Ladra, T. Pirashvili, Crossed modules for Lie-Rinehart algebras. J. Algebra 274 (2004), 192-201. [WoS] | Zbl 1046.17006
[3] L. Chen, D. Meng, B. Ren, On quasi-toral restricted Lie algebras. Chinese Ann. Math. Ser B 26 (2005), 207-218. [Crossref] | Zbl 1105.17008
[4] B. Chew, On the commutativity of restricted Lie algebras. Proc. Amer. Math. Soc. 16 (1965), 547.
[5] Z. Chen, Z. Liu, D. Zhong, Lie-Rinehart bialgebras for crossed products. J. Pure Appl. Algebra 215 (2011), 1270-1283. [WoS] | Zbl 1217.17014
[6] I. Dokas, Cohomology of restricted Lie-Rinehart algebras and the Brauer group. Adv. Math. 231 (2012), 2573-2592. [WoS] | Zbl 1335.17009
[7] I. Dokas, J. Loday, On restricted Leibniz algebras. Comm. Algebra 34 (2006), 4467-4478. | Zbl 1162.17001
[8] R. Farnsteiner, Conditions for the commutativity of restricted Lie algebras. Heidelberg and New York, 1967. | Zbl 0565.17005
[9] R. Farnsteiner, Note on Frobenius extensions and restricted Lie superalgebras. J. Pure Appl. Algebra 108 (1996), 241-256. | Zbl 0854.17022
[10] R. Farnsteiner, Restricted Lie algebras with semilinear p-mapping. Amer. Math. Soc. 91 (1984), 41-45. | Zbl 0511.17004
[11] J. Herz, Pseudo-alg J ebras de Lie. C. R. Acad. Sci. paris 236 (1953), 1935-1937.
[12] T. Hodge, Lie triple system, restricted Lie triple system and algebraic groups. J. Algebra 244 (2001), 533-580. | Zbl 0987.17011
[13] J. Huebschmann, Poisson cohomology and quantization. J. Reine Angew. Math. 408 (1990), 57-113. | Zbl 0699.53037
[14] N. Jacobson, Lie algebras. Dover., Publ. New York, 1979. | Zbl 0121.27504
[15] R. Palais, The cohomology of Lie rings. Amer. Math. Soc., Providence, R. I., Proc. Symp. Pure Math. (1961), 130-137. [Crossref]
[16] G. Rinehart, Differential forms on general commutative algebras. Trans. Amer. Math. Soc. 108 (1963), 195-222. | Zbl 0113.26204
[17] H. Strade, R. Farnsteiner, Modular Lie algebras and their representations. New York: Marcel Dekker Inc. 300 (1988). | Zbl 0648.17003