Only 3-generalized metric spaces have a compatible symmetric topology
Tomonari Suzuki ; Badriah Alamri ; Misako Kikkawa
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

We prove that every 3-generalized metric space is metrizable. We also show that for any ʋ with ʋ ≥ 4, not every ʋ-generalized metric space has a compatible symmetric topology.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271766
@article{bwmeta1.element.doi-10_1515_math-2015-0048,
     author = {Tomonari Suzuki and Badriah Alamri and Misako Kikkawa},
     title = {Only 3-generalized metric spaces have a compatible symmetric topology},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {06594244},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0048}
}
Tomonari Suzuki; Badriah Alamri; Misako Kikkawa. Only 3-generalized metric spaces have a compatible symmetric topology. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0048/

[1] B. Alamri, T. Suzuki and L. A. Khan, Caristi’s fixed point theorem and Subrahmanyam’s fixed point theorem in ʋ-generalized metric spaces, J. Funct. Spaces, 2015, Art. ID 709391, 6 pp. [WoS] | Zbl 1321.54055

[2] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. MR1771669 | Zbl 0963.54031

[3] G. Gruenhage, “Generalized metric spaces” in Handbook of set-theoretic topology, 1984, pp. 423–501, North-Holland, Amsterdam. MR0776629

[4] Z. Kadelburg and S. Radenovi´c, On generalized metric spaces: A survey, TWMS J. Pure Appl. Math., 5 (2014), 3–13. | Zbl 1305.54040

[5] W. A. Kirk and N. Shahzad, Generalized metrics and Caristi’s theorem, Fixed Point Theory Appl., 2013, 2013:129. MR3068651 [WoS]

[6] T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstr. Appl. Anal., 2014, Art. ID 458098, 5 pp. [WoS]

[7] S. Willard, General Topology, Dover (2004). MR2048350