Linear and nonlinear abstract differential equations of high order
Veli B. Shakhmurov
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

The nonlocal boundary value problems for linear and nonlinear degenerate abstract differential equations of arbitrary order are studied. The equations have the variable coefficients and small parameters in principal part. The separability properties for linear problem, sharp coercive estimates for resolvent, discreetness of spectrum and completeness of root elements of the corresponding differential operator are obtained. Moreover, optimal regularity properties for nonlinear problem is established. In application, the separability and spectral properties of nonlocal boundary value problem for the system of degenerate differential equations of infinite order is derived.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271775
@article{bwmeta1.element.doi-10_1515_math-2015-0044,
     author = {Veli B. Shakhmurov},
     title = {Linear and nonlinear abstract differential equations of high order},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {1215.34067},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0044}
}
Veli B. Shakhmurov. Linear and nonlinear abstract differential equations of high order. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0044/

[1] Amann H., Maximal regularity for non-autonomous evolution equations. Advanced Nonlinear Studies, (2004) 4, 417-430. | Zbl 1072.35103

[2] Agranovich M. S., Spectral boundary value problems in Lipschitz domains for strongly elliptic systems in Banach spaces Hpơ p and Bơ; Funct. Anal. Appl., (2008) 42(4), 249–267. [Crossref] | Zbl 1169.35362

[3] Arendt W., Duelli, M., Maximal Lp- regularity for parabolic and elliptic equations on the line, J. Evol. Equ. (2006), 6(4), 773-790. [Crossref] | Zbl 1113.35108

[4] Agarwal R., Bohner M., Shakhmurov V. B., Linear and nonlinear nonlocal boundary value problems for differential operator equations, Appl. Anal., (2006), 85(6-7), 701-716. | Zbl 1108.34053

[5] Ashyralyev A, Cuevas. C and Piskarev S., On well-posedness of difference schemes for abstract elliptic problems in spaces, Numer. Func. Anal. Opt., (2008)29, (1-2), 43-65. [WoS][Crossref] | Zbl 1140.65073

[6] Bourgain, J., Some remarks on Banach spaces in which martingale difference sequences are unconditional, Arkiv Math. (1983)21, 163-168. | Zbl 0533.46008

[7] Burkholder D. L., A geometrical conditions that implies the existence certain singular integral of Banach space-valued functions, Proc. Conf. Harmonic Analysis in Honor of Antonu Zigmund, Chicago, 1981,Wads Worth, Belmont, (1983), 270-286.

[8] Dore, G., Lp-regularity for abstract differential equations. In: Functional Analysis and Related Topics, H. Komatsu (ed.), Lecture Notes in Math. 1540. Springer, 1993. | Zbl 0818.47044

[9] Denk R., Hieber M., Prüss J., R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. (2003), 166 (788), 1-111. | Zbl 1274.35002

[10] Favini A., Shakhmurov V., Yakubov Y., Regular boundary value problems for complete second order elliptic differential-operator equations in UMD Banach spaces, Semigroup Form, (2009), 79 (1), 22-54. | Zbl 1177.47089

[11] Favini, A., Yagi, A., Degenerate Differential Equations in Banach Spaces, Taylor & Francis, Dekker, New-York, 1999. | Zbl 0913.34001

[12] Goldstain J. A., Semigroups of Linear Operators and Applications, Oxford University Press, Oxfard, 1985.

[13] Krein S. G., Linear Differential Equations in Banach space, American Mathematical Society, Providence, 1971.

[14] Lunardi A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser, 2003. | Zbl 0816.35001

[15] Lions J. L., Peetre J., Sur one classe d’espases d’interpolation, IHES Publ. Math. (1964)19, 5-68.

[16] Shklyar, A.Ya., Complete second order linear differential equations in Hilbert spaces, Birkhauser Verlak, Basel, 1997. | Zbl 0873.34049

[17] Sobolevskii P. E., Coerciveness inequalities for abstract parabolic equations, Dokl. Akad. Nauk, (1964), 57(1), 27-40.

[18] Shahmurov R., On strong solutions of a Robin problem modeling heat conduction in materials with corroded boundary, Nonlinear Anal. Real World Appl., (2011),13(1), 441-451. [WoS] | Zbl 1238.35033

[19] Shahmurov R., Solution of the Dirichlet and Neumann problems for a modified Helmholtz equation in Besov spaces on an annuals, J. Differential Equations, 2010, 249(3), 526-550. | Zbl 1194.35114

[20] Shakhmurov V. B., Estimates of approximation numbers for embedding operators and applications, Acta. Math. Sin., (Engl. Ser.), (2012), 28 (9), 1883-1896. [Crossref] | Zbl 1292.47012

[21] Shakhmurov V. B., Degenerate differential operators with parameters, Abstr. Appl. Anal., (2007), 2006, 1-27. [Crossref] | Zbl 1181.35112

[22] Shakhmurov V. B., Regular degenerate separable differential operators and applications, Potential Anal., (2011), 35(3), 201-212. | Zbl 1229.34093

[23] Shakhmurov V. B., Shahmurova A., Nonlinear abstract boundary value problems atmospheric dispersion of pollutants, Nonlinear Anal. Real World Appl., (2010), 11(2), 932-951. [WoS] | Zbl 1186.35234

[24] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

[25] Triebel H., Spaces of distributions with weights. Multiplier on Lp spaces with weights. Math. Nachr., (1977)78, 339-356. [Crossref]

[26] Weis L, Operator-valued Fourier multiplier theorems and maximal Lp regularity, Math. Ann., (2001), 319, 735-758. | Zbl 0989.47025

[27] Yakubov S. and Yakubov Ya., Differential-Operator Equations. Ordinary and Partial Differential Equations, Chapman and Hall /CRC, Boca Raton, 2000. | Zbl 0936.35002