The classification of partially symmetric 3-braid links
Alexander Stoimenov
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

We classify 3-braid links which are amphicheiral as unoriented links, including a new proof of Birman- Menasco’s result for the (orientedly) amphicheiral 3-braid links. Then we classify the partially invertible 3-braid links.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271773
@article{bwmeta1.element.doi-10_1515_math-2015-0043,
     author = {Alexander Stoimenov},
     title = {The classification of partially symmetric 3-braid links},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0043}
}
Alexander Stoimenov. The classification of partially symmetric 3-braid links. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0043/

[1] Bennequin, D. , Entrelacements et équations de Pfaff , Soc. Math. de France, Astérisque 107-108 (1983), 87–161.

[2] Birman, J. S. , On the Jones polynomial of closed 3-braids, Invent. Math. 1985, 81(2), 287–294. | Zbl 0588.57005

[3] -"- , New points of view in knot theory, Bull. Amer. Math. Soc. 1993, 28(2), 253–287. | Zbl 0785.57001

[4] -"- and Menasco, W. W. , Studying knots via braids III: Classifying knots which are closed 3 braids, Pacific J. Math. 1993, 161, 25–113. | Zbl 0813.57010

[5] Brandt, R. D. , Lickorish, W. B. R. and Millett, K. , A polynomial invariant for unoriented knots and links, Inv. Math. 1986, 74, 563–573. | Zbl 0595.57009

[6] Cromwell, P. R. , Homogeneous links, J. London Math. Soc. (series 2) 1989, 39, 535–552. | Zbl 0685.57004

[7] Dasbach, O. and Gemein, B. , A Faithful Representation of the Singular Braid Monoid on Three Strands, Proceedings of the International Conference on Knot Theory “Knots in Hellas, 98", Series on Knots and Everything 24, World Scientific, 2000, 48–58. | Zbl 0973.57004

[8] -"- and Lin, X.-S. , A volume-ish theorem for the Jones polynomial of alternating knots, Pacific J. Math. 2007, 231(2), 279–291. | Zbl 1166.57002

[9] -"- and " , On the Head and the Tail of the Colored Jones Polynomial, Compositio Math. 2006, 142(5), 1332–1342. | Zbl 1106.57008

[10] Freyd, P. , Hoste, J. , Lickorish, W. B. R. , Millett, K. , Ocneanu, A. and Yetter, D. , A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 1985, 12, 239–246. [Crossref] | Zbl 0572.57002

[11] Futer, D. , Kalfagianni, E. and Purcell, J. , Cusp areas of Farey manifolds and applications to knot theory, Int. Math. Res. Not. 2010, 23, 4434–4497. [WoS] | Zbl 1227.57023

[12] Gabai, D. , The Murasugi sum is a natural geometric operation II, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982), 93–100, Contemp. Math. 44, Amer. Math. Soc., Providence, RI, 1985.

[13] -"- , The Murasugi sum is a natural geometric operation, Low-dimensional topology (San Francisco, Calif., 1981), Contemp. Math. 20, 131–143, Amer. Math. Soc., Providence, RI, 1983.

[14] Hosokawa, F. , On r-polynomials of links, Osaka Math. J. 1958, 10, 273–282. | Zbl 0105.17404

[15] Hoste, J. , The first coefficient of the Conway polynomial, Proc. Amer. Math. Soc. 1985, 95(2), 299–302. | Zbl 0576.57005

[16] Jones, V. F. R. , Hecke algebra representations of of braid groups and link polynomials, Ann. of Math. 1987, 126, 335–388. | Zbl 0631.57005

[17] Kanenobu, T. , Relations between the Jones and Q polynomials of 2-bridge and 3-braid links, Math. Ann. 1989, 285, 115–124. | Zbl 0651.57006

[18] Kauffman, L. H. , State models and the Jones polynomial, Topology 1987, 26, 395–407. [Crossref]

[19] Kirby, R. (ed.), Problems of low-dimensional topology, book available on http://math.berkeley.edu/˜kirby. | Zbl 0394.57002

[20] Lickorish, W. B. R. and Millett, K. C. , The reversing result for the Jones polynomial, Pacific J. Math. 1986, 124(1), 173–176. | Zbl 0553.57001

[21] -"- and Thistlethwaite, M. B. , Some links with non-trivial polynomials and their crossing numbers, Comment. Math. Helv. 1988, 63, 527–539. | Zbl 0686.57002

[22] Menasco, W. W. and Thistlethwaite, M. B. , The Tait flyping conjecture, Bull. Amer. Math. Soc. 25 (2) (1991), 403–412. [Crossref] | Zbl 0745.57002

[23] Murakami, J. , The Kauffman polynomial of links and representation theory, Osaka J. Math. 1987, 24(4), 745–758. | Zbl 0666.57006

[24] Przytycki, J. and Traczyk, P. , Invariants of links of Conway type, Kobe J. Math. 1988, 4(2), 115–139. | Zbl 0655.57002

[25] Rolfsen, D. , Knots and links, Publish or Parish, 1976.

[26] Schreier, O. , Über die Gruppen AaBb D 1, Abh. Math. Sem. Univ. Hamburg 1924, 3, 167–169. [Crossref] | Zbl 50.0070.01

[27] Stoimenow, A. , The skein polynomial of closed 3-braids, J. Reine Angew. Math. 2003, 564, 167–180. | Zbl 1042.57006

[28] -"- , Properties of closed 3-braids, preprint math.GT/0606435.

[29] -"- , Coefficients and non-triviality of the Jones polynomial, J. Reine Angew. Math. 2011, 657, 1–55. [WoS] | Zbl 1257.57010

[30] Thistlethwaite, M. B. , On the Kauffman polynomial of an adequate link, Invent. Math. 93(2) (1988), 285–296. [Crossref] | Zbl 0645.57007

[31] -"- , A spanning tree expansion for the Jones polynomial, Topology 1987, 26, 297–309. | Zbl 0622.57003

[32] Xu, P. , The genus of closed 3-braids, J. Knot Theory Ramifications 1992, 1(3), 303–326. | Zbl 0773.57007