The aim of this paper is to study the solvability of the problem [...] where Ω is a bounded smooth domain of RN, N > 2s, M ε {0, 1}, 0 < s < 1, γ > 0, λ > 0, p > 1 and f is a nonnegative function. We distinguish two cases: – For M = 0, we prove the existence of a solution for every γ > 0 and λ > 0. A1 – For M = 1, we consider f ≡ 1 and we find a threshold ʌ such that there exists a solution for every 0 < λ < ʌ ƒ, and there does not for λ > ʌ ƒ
@article{bwmeta1.element.doi-10_1515_math-2015-0038, author = {Bego\~na Barrios and Ida De Bonis and Mar\'\i a Medina and Ireneo Peral}, title = {Semilinear problems for the fractional laplacian with a singular nonlinearity}, journal = {Open Mathematics}, volume = {13}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0038} }
Begoña Barrios; Ida De Bonis; María Medina; Ireneo Peral. Semilinear problems for the fractional laplacian with a singular nonlinearity. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0038/
[1] Ambrosetti A., Brezis H., Cerami G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 1994, 122(2), 519-543 | Zbl 0805.35028
[2] Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14, 349-381 [Crossref] | Zbl 0273.49063
[3] Arcoya D., Boccardo L., Multiplicity of solutions for a Dirichlet problem with a singular and a supercritical nonlinearities, Differential Integral Equations, 2013, 26, 119-128 | Zbl 1289.35098
[4] Arcoya D., Moreno-Merida L., Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity, Nonlinear Anal., 2014, 95, 281-291 | Zbl 1285.35013
[5] Barrios B., Colorado E., Servadei R., Soria F., A critical fractional equation with concave-convex nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire (in press), DOI: 10.1016/j.anihpc.2014.04.003 [Crossref] | Zbl 06477004
[6] Barrios B., Medina M., Peral I., Some remarks on the solvability of non local elliptic problems with the Hardy potential. Commun. Contemp. Math., 2014, 16, 4 [Crossref][WoS] | Zbl 1295.35376
[7] Boccardo L., Orsina L., Semilinear elliptic equations with singular nolinearities, Calc. Var. Partial Differential Equations, 2010, 37(3-4), 363-380
[8] Boccardo L., A Dirichlet problem with singular and supercritical nonlinearities, Nonlinear Anal., 2012, 75, 4436-4440 | Zbl 1250.35112
[9] Boccardo L., Escobedo M., Peral I., A Dirichlet problem involving critical exponent, Nonlinear Anal., 1995, 24, 1639-1848
[10] Brezis H. , Kamin S., Sublinear elliptic equations in Rn, Manuscripta Math., 1992, 74, 87–106 | Zbl 0761.35027
[11] Brezis H., Nirenberg L., H1 versus C1 local minimizers, C. R. Acad. Sci. Paris t., 1993, 317, 465-472 | Zbl 0803.35029
[12] Canino A., Degiovanni M., A variational approach to a class of singular semilinear elliptic equations, Journal of Convex Analysis, 2004, 11(1), 147-162 | Zbl 1073.35092
[13] Crandall M. G., Rabinowitz P. H., Tartar L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 1977, 2, 193-222 | Zbl 0362.35031
[14] Coclite M. M., Palmieri G., On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations, 1989, 14(10), 1315-1327 | Zbl 0692.35047
[15] Dávila J., A strong maximum principle for the Laplace equation with mixed boundary condition, J. Funct. Anal., 2001, 183, 231-244 | Zbl 0979.35037
[16] Di Nezza E., Palatucci G., Valdinoci E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5), 521-573 [WoS] | Zbl 1252.46023
[17] García Azorero J. P., Peral I., Multiplicity of solutions for elliptic problems with critical exponents or with a non-symmetric term, Transactions American Mathematical Society, 1991, 323(2), 877-895 | Zbl 0729.35051
[18] García Azorero J. P., Manfredi J. J., Peral I., Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math., 2000, 2(3), 385-404 [Crossref] | Zbl 0965.35067
[19] Ghergu M., Radulescu V., Singular elliptic problems with convection term in anisotropic media, Mathematical analysis and applications, 2006, 74-89, AIP Conf. Proc., 835, Amer. Inst. Phys., Melville, NY
[20] Ghoussoub N., Preiss D., A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1989, 6(5), 321-330 | Zbl 0711.58008
[21] Hirano N., Saccon C., Shioji N., Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations, 2008, 245, 1997-2037 | Zbl 1158.35044
[22] Greco A., Servadei R., Hopf’s lemma and constrained radial symmetry for the fractional laplacian, preprint
[23] Lair A. V., Shaker A. W., Classical and Weak Solutions of a Singular Semilinear Elliptic Problem, Journal of Mathematical Analysis and Applications, 1997, 211, 371-385 | Zbl 0880.35043
[24] Landkof N., Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer- Verlag, New York-Heidelberg, 1972
[25] Lazer A. C., McKenna P. J., On a Singular Nonlinear Elliptic Boundary-Value Problem, Proceedings of the American Mathematical Society, 1991, 111(3), 721-730 | Zbl 0727.35057
[26] Lazer A. C., McKenna P. J., On Singular Boundary Value Problems for the Monge-Ampère Operator, Journal of Mathematical Analysis and Applications, 1996, 197, 341-362 | Zbl 0856.35042
[27] Leonori T., Peral I., Primo A., Soria F., Basic estimates for solution of elliptic and parabolic equations for a class of nonlocal operators, preprint | Zbl 1332.45009
[28] Ros-Oton X., Serra J., The Dirichlet problem for the fractional laplacian: regularity up to the boundary, J. Math. Pures Appl. (9), 2014, 101(3), 275-302 | Zbl 1285.35020
[29] Servadei R., Valdinoci E., Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 2012, 389(2), 887-898 [WoS] | Zbl 1234.35291
[30] Servadei R., Valdinoci E., Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 2013, 33(5), 2105-2137 [WoS] | Zbl 1303.35121
[31] Silvestre L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 2007, 60(1), 67-112 [WoS] | Zbl 1141.49035
[32] Stampacchia G., Le probléme de Dirichlet pour les équations elliptiques du second ordre á coefficients discontinus, Ann. Inst. Fourier (Grenoble), 1965, 15, fasc. 1, 189-258 [Crossref] | Zbl 0151.15401
[33] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970 | Zbl 0207.13501
[34] Stuart C. A., Self-trapping of an electromagnetic field and bifurcation from the essential spectrum, Arch. Rational Mech. Anal., 1991, 113, 65-96 [Crossref] | Zbl 0745.35044
[35] Zhang Z., Boundary behavior of solutions to some singular elliptic boundary value problems. Nonlinear Anal., 2008, 69(7), 2293-2302 | Zbl 1151.35032