Let G be a group and W a G-set. In this work we prove a result that describes geometrically, for a Poincaré duality pair (G, W ), the set of representatives for the G-orbits in W and the family of isotropy subgroups. We also prove, through a cohomological invariant, a necessary condition for a pair (G, W ) to be a Poincaré duality pair when W is infinite.
@article{bwmeta1.element.doi-10_1515_math-2015-0035, author = {Maria Gorete Carreira Andrade and Erm\'\i nia de Lourdes Campello Fanti and L\'\i gia La\'\i s F\^emina}, title = {On Poincar\'e duality for pairs (G,W)}, journal = {Open Mathematics}, volume = {13}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0035} }
Maria Gorete Carreira Andrade; Ermínia de Lourdes Campello Fanti; Lígia Laís Fêmina. On Poincaré duality for pairs (G,W). Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0035/
[1] Andrade, M.G.C., Fanti, E.L.C., A relative cohomological invariant for pairs of groups, Manuscripta Math., 1994, 83, 1-18. [Crossref] | Zbl 0837.20061
[2] Andrade, M.G.C., Fanti, E.L.C., Daccach, J. A., On certain relative invariants, Int. J. Pure Appl. Math., 2005, 21(3), 335-352. | Zbl 1121.20038
[3] Andrade, M.G.C., Fanti, E.L.C., Fêmina, L.L., Some remarks about Poincaré duality pairs, JP J. Geom. Topol., 2012, 12(2), 159-172. | Zbl 1262.20055
[4] Bieri, R., Eckmann, B., Relative homology and Poincaré duality for group pairs, J. Pure Appl. Algebra, 1978, 13, 277-319. [Crossref] | Zbl 0392.20032
[5] Brown, K.S., Cohomology of groups, Grad. Texts in Mat. 87, Springer, Berlin-New York-Heidelberg, 1982.
[6] Dicks, W., Dunwoody, M. J., Groups acting on graphs, Cambridge University Press, Cambridge, 1989. | Zbl 0665.20001
[7] Kropholler, P. H., Roller, M. A., Splittings of Poincaré duality groups II, J. Lond. Math. Soc., 1988, 38, 410-420. | Zbl 0687.20045
[8] Weiss, E., Cohomology of Groups, Academic Press Inc., New York, 1969. | Zbl 0192.34204