Infinite dimension of solutions of the Dirichlet problem
Vladimir Ryazanov
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

It is proved that the space of solutions of the Dirichlet problem for the harmonic functions in the unit disk with nontangential boundary limits 0 a.e. has the infinite dimension.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270934
@article{bwmeta1.element.doi-10_1515_math-2015-0034,
     author = {Vladimir Ryazanov},
     title = {Infinite dimension of solutions of the Dirichlet problem},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0034}
}
Vladimir Ryazanov. Infinite dimension of solutions of the Dirichlet problem. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0034/

[1] Dovgoshey O., Martio O., Ryazanov V., Vuorinen M. The Cantor function, Expo. Math., 2006, 24, 1-37 | Zbl 1098.26006

[2] Efimushkin A., Ryazanov V. On the Riemann-Hilbert problem for the Beltrami equations, Contemporary Mathematics (to appear), see also preprint http://arxiv.org/abs/1402.1111v3 [math.CV] 30 July 2014, 1-25

[3] Garnett J.B., Marshall D.E. Harmonic Measure, Cambridge Univ. Press, Cambridge, 2005

[4] Gehring F.W., On the Dirichlet problem, Michigan Math. J., 1955-1956, 3, 201

[5] Goluzin G.M., Geometric theory of functions of a complex variable, Transl. of Math. Monographs, 26, American Mathematical Society, Providence, R.I., 1969 | Zbl 0183.07502

[6] Koosis P., Introduction to Hp spaces, 2nd ed., Cambridge Tracts in Mathematics, 115, Cambridge Univ. Press, Cambridge, 1998 | Zbl 1024.30001

[7] Ryazanov V., On the Riemann-Hilbert Problem without Index, Ann. Univ. Bucharest, Ser. Math. 2014, 5, 169-178 | Zbl 1324.31002