It is proved that the space of solutions of the Dirichlet problem for the harmonic functions in the unit disk with nontangential boundary limits 0 a.e. has the infinite dimension.
@article{bwmeta1.element.doi-10_1515_math-2015-0034, author = {Vladimir Ryazanov}, title = {Infinite dimension of solutions of the Dirichlet problem}, journal = {Open Mathematics}, volume = {13}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0034} }
Vladimir Ryazanov. Infinite dimension of solutions of the Dirichlet problem. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0034/
[1] Dovgoshey O., Martio O., Ryazanov V., Vuorinen M. The Cantor function, Expo. Math., 2006, 24, 1-37 | Zbl 1098.26006
[2] Efimushkin A., Ryazanov V. On the Riemann-Hilbert problem for the Beltrami equations, Contemporary Mathematics (to appear), see also preprint http://arxiv.org/abs/1402.1111v3 [math.CV] 30 July 2014, 1-25
[3] Garnett J.B., Marshall D.E. Harmonic Measure, Cambridge Univ. Press, Cambridge, 2005
[4] Gehring F.W., On the Dirichlet problem, Michigan Math. J., 1955-1956, 3, 201
[5] Goluzin G.M., Geometric theory of functions of a complex variable, Transl. of Math. Monographs, 26, American Mathematical Society, Providence, R.I., 1969 | Zbl 0183.07502
[6] Koosis P., Introduction to Hp spaces, 2nd ed., Cambridge Tracts in Mathematics, 115, Cambridge Univ. Press, Cambridge, 1998 | Zbl 1024.30001
[7] Ryazanov V., On the Riemann-Hilbert Problem without Index, Ann. Univ. Bucharest, Ser. Math. 2014, 5, 169-178 | Zbl 1324.31002