Classical models of clusters’ fission have failed to fully explain strange phenomenons like the phenomenon of shattering (Ziff et al., 1987) and the sudden appearance of infinitely many particles in some systems with initial finite particles number. Furthermore, the bounded perturbation theorem presented in (Pazy, 1983) is not in general true in solution operators theory for models of fractional order γ (with 0 < γ ≤ 1). In this article, we introduce and study a model that can be understood as the fractional generalization of the clusters’ fission process.We make use of the theory of strongly continuous solution operators for fractional models (analogues of C0-semigroups for classical models) and the subordination principle for fractional evolution equations (Bazhlekova, 2000, Prüss, 1993) to analyze and show existence results for clusters’ splitting model with derivative of fractional order. In the process, we exploit some properties of Mittag-Leffler relaxation function (Berberan-Santos, 2005), the He’s homotopy perturbation (He, 1999) and Kato’s type perturbation (Banasiak, 2006) methods. The Cauchy problem for multiplication operator in the fractional dynamics is first considered, before we perturb it. Some additional concepts like Laplace transform, Hille-Yosida theorem and the dominated convergence theorem are use to finally show that there is a solution operator to the full fractional model that is positive and contractive.
@article{bwmeta1.element.doi-10_1515_math-2015-0033, author = {Emile Franc Doungmo Goufo and Stella Mugisha}, title = {Positivity and contractivity in the dynamics of clusters' splitting with derivative of fractional order}, journal = {Open Mathematics}, volume = {13}, year = {2015}, zbl = {06616946}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0033} }
Emile Franc Doungmo Goufo; Stella Mugisha. Positivity and contractivity in the dynamics of clusters’ splitting with derivative of fractional order. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0033/
[1] Anderson W.J., Continuous-Time Markov Chains. An Applications-Oriented Approach, Springer Verlag, New York, 1991 | Zbl 0731.60067
[2] Atangana A., On the singular perturbations for fractional differential equation, The Scientific World Journal, 2014, Article ID 752371, vol. 2014, 9 pages, preprint available at http://dx.doi.org/10.1155/2013/752371 [Crossref]
[3] Atangana A., Kílíçman A., A possible generalization of acoustic wave equation using the concept of perturbed, Mathematical problems in Engineering, Article ID 696597 preprint available at http://dx.doi.org/10.1155/2013/696597 [Crossref] | Zbl 1299.76229
[4] Atangana A., Botha F.C., A generalized groundwater flow equation using the concept of variable-order derivative, Boundary Value Problems 2013, 2013:53 preprint available at http://www.boundaryvalueproblems.com/content/2013/1/53 | Zbl 1291.35206
[5] Balakrishnan, A.V., Fractional powers of closed operators and semigroups generated by them, Pacific J. Math., 1960, 10, 419 | Zbl 0103.33502
[6] Banasiak J., Arlotti L., Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, 2006. | Zbl 1097.47038
[7] Bartle R.G., The elements of integration and Lebesgue measure, Wiley Interscience, 1995 | Zbl 0838.28001
[8] Benson D.A., Schumer R., Meerschaert M.M., Wheatcraft S.W., Fractional Dispersion, Levy Motion, and the MADE Tracer Tests. Transport in Porous Media 2001, 42: 211-240.
[9] Benson D.A., Meerschaert M.M., Revielle J., Fractional calculus in hydrologic modeling: A numerical perspective. Advances in Water Resources 2013, 51, 479–497
[10] Bazhlekova E. G., Subordination principle for fractional evolution equations, Fractional Calculus & Applied Analysis, 2000, 3(3), 213 – 230 | Zbl 1041.34046
[11] Berberan-Santos Mário N., Properties of the Mittag-Leffler relaxation function, Journal of Mathematical Chemistry, November 2005, 38(4)
[12] Brockmann D., Hufnagel L., Front propagation in reaction-superdiffusion dynamics: Taming Lévy flights with fluctuations, Phys. Review Lett. 98, 2007
[13] Caputo M., Linear models of dissipation whose Q is almost frequency independent, Journal of the Royal Australian Historical Society, 1967, 13(2), 529–539
[14] Diethelm K., The Analysis of Fractional Differential Equations, Springer, Berlin, 2010. | Zbl 1215.34001
[15] Demirci E., Unal A., Özalp N., A fractional order seir model with density dependent death rate, Hacettepe Journal of Mathematics and Statistics, 2011, 40(2), 287–295 | Zbl 1262.92032
[16] Doungmo Goufo E.F., Maritz R. , Munganga J., Some properties of Kermack-McKendrick epidemic model with fractional derivative and nonlinear incidence, Advances in Difference Equations 2014, 2014:278. preprint available at DOI: 10.1186/1687-1847-2014- 278, URL: http://www.advancesindifferenceequations.com/content/2014/1/278 [Crossref]
[17] Doungmo Goufo E.F., Mugisha S., Mathematical solvability of a Caputo fractional polymer degradation model using further generalized functions, Mathematical Problems in Engineering, Volume 2014, Article ID 392792, 5 pages, 2014. preprint available at http://dx.doi.org/10.1155/2014/392792 [Crossref]
[18] EF Doungmo Goufo, A biomathematical view on the fractional dynamics of cellulose degradation, Fract. Calc. Appl. Anal., 18(3), 2015 | Zbl 1316.26004
[19] EF Doungmo Goufo, Non-local and Non-autonomous Fragmentation-Coagulation Processes in Moving Media, PhD thesis, North- West University, South Africa, 2014.
[20] Doungmo Goufo E.F., Oukouomi Noutchie S.C., Honesty in discrete, nonlocal and randomly position structured fragmentation model with unbounded rates, Comptes Rendus Mathematique, C.R Acad. Sci, Paris, Ser, I, 2013, preprint available at http://dx.doi.org/10.1016/j.crma.2013.09.023 [Crossref] | Zbl 06238800
[21] Engel K-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics (Book 194), Springer, 2000 | Zbl 0952.47036
[22] Érdelyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher Transcendental Functions, Vol. III McGraw-Hill, New York, 1955 | Zbl 0064.06302
[23] Filippov I., On the distribution of the sizes of particles which undergo splitting, Theory Probab. Appl. 1961, 6, 275–293
[24] Garibotti C. R., Spiga G., Boltzmann equation for inelastic scattering, J. Phys. A 1994, 27, 2709–2717 | Zbl 0834.45011
[25] Gel’fand I., Shilov G., Generalized Functions, vol. I. Academic Pres5, New York, 1964.
[26] Gorenflo R., Luchko Y., Mainardi F., Analytical properties and applications of the Wright function, Fractional Calculus and Applied Analysis, 1999, 2(4), 383–414 | Zbl 1027.33006
[27] He J. H., Homotopy perturbation technique, Comput. Methods Appl. Mech., 1999 vol. 178, pp. 257–262 | Zbl 0956.70017
[28] He J. H., A coupling method of homotopy technique and perturbation technique for nonlinear problems, Internat. J. Non-Linear Mech., 2000, 35, 37–43 | Zbl 1068.74618
[29] Hilfer R., Application of Fractional Calculus in Physics, World Scientific, Singapore, 1999.
[30] Hilfer R., On new class of phase transitions, Random magnetism and High temprature superconductivity, page 85, Singapore, World Scientific publ. Co., 1994.
[31] Lachowicz M., Wrzosek D., A nonlocal coagulation-fragmentation model, Appl. Math. (Warsaw), 2000, 27 (1), 45–66 | Zbl 0994.35054
[32] Lions J.L., Peetre J., Sur une classe d’espace d’interpolation, Inst. Hautes étude Sci. Publ. Math, 1964, 19, 5–68 [Crossref]
[33] McLaughlin D. J., Lamb W., McBride A. C., A semigroup approach to fragmentation models, SIAM Journal on Mathematical Analysis, 1997, 28(5), 1158–1172 [Crossref] | Zbl 0892.47044
[34] Majorana A., Milazzo C., Space homogeneous solutions of the linear semiconductor Boltzmann equation. J. Math. Anal. Appl. 2001, 259(2), 609–629 | Zbl 0986.35112
[35] Melzak Z.A., A Scalar Transport Equation, Trans. Amer. Math. Soc., 1957, 85, 547–560 [Crossref]
[36] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Willey and Sons, Inc., New York, 2003. | Zbl 0789.26002
[37] Mittag-Leffler G.M., C. R. Acad. Sci. Paris (Ser. II) 1903, 137–554
[38] Norris J.R., Markov Chains, Cambridge University Press, Cambridge, 1998
[39] Oldham K. B., Spanier J., The fractional calculus, Academic Press, New York, 1999 | Zbl 0428.26004
[40] Oukouomi Noutchie S.C., Doungmo Goufo E. F., Exact solutions of fragmentation equations with general fragmentation rates and separable particles distribution kernels, Mathematical Problems in Engineering, 2014, vol. 2014, Article ID 789769, 5 pages, preprint available at http://dx.doi.org/10.1155/2014/789769 [Crossref]
[41] Oukouomi Noutchie S.C., Doungmo Goufo E.F., Global solvability of a continuous model for nonlocal fragmentation dynamics in a moving medium, Mathematical Problem in Engineering, 2013, vol. 2013, Article ID 320750, 8 pages, 2013, preprint available at http://dx.doi.org/10.1155/2013/320750 [Crossref] | Zbl 1296.35022
[42] Özalp N., Demirci E., A fractional order SEIR model with vertical transmission Mathematical and Computer Modelling, 54(2011), 1–6 | Zbl 1225.34011
[43] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, 44, 1983 | Zbl 0516.47023
[44] Podlubny, I., Fractional Differential Equations, Academic Press, California, USA, 1999
[45] Pooseh S., Rodrigues H.S., Torres D.F.M., Fractional derivatives in dengue epidemics. In: Simos, T.E., Psihoyios, G., Tsitouras, C., Anastassi, Z. (eds.) Numerical Analysis and Applied Mathematics, ICNAAM, American Institute of Physics, Melville, 2011, 739–742
[46] Prüss J., Evolutionary Integral Equations and Applications, Birkhäuser, Basel–Boston–Berlin 1993
[47] Rudnicki R., Wieczorek R., Phytoplankton dynamics: From the behaviour of cells to a transport equation, Math. Model. Nat. Phenom, 2006, 1 (1), 83–100 | Zbl 1201.92062
[48] Rubin B., Fractional Integrals and potentials, Addison Wesley Longman Limited, Harlow 1996 | Zbl 0864.26004
[49] Samko S.G., Kilbas A.A., Marichev O.I., Franctional integrals and derivatives, Theory and Application, Gordon and Breach, Amsterdam, 1993
[50] Wagner W., Explosion phenomena in stochastic coagulation-fragmentation models, Ann. Appl. Probab., 2005, 15(3), 2081–2112 [Crossref] | Zbl 1082.60075
[51] Westphal U., ein Kalkül für gebrochene Potenzen infinitesimaler Erzeuger von Halbgruppen und Gruppen von Operatoren, Teil I: Halbgruppen-erzeuger, Compositio Math., 1970, 22, 67–103 | Zbl 0194.15401
[52] Wright E. M., The generalized Bessel function of order greater than one. Quarterly Journal of Mathematics (Oxford ser.), 1940, 11, 36–48 | Zbl 0023.14101
[53] Yosida K., Functional Analysis, Sixth Edition, Springer- Verlag, 1980
[54] Ziff R.M., McGrady E.D., The kinetics of cluster fragmentation and depolymerization, J. Phys. A, 1985, 18 3027–3037
[55] Ziff R.M., McGrady E.D., Shattering transition in fragmentation, Phys. Rev. Lett., 1987, 58(9)
[56] Ziff, R.M., McGrady, E.D., Kinetics of polymer degradation, Macromolecules 19, 1986, 2513–2519.