Properties of k-beta function with several variables
Abdur Rehman ; Shahid Mubeen ; Rabia Safdar ; Naeem Sadiq
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

In this paper, we discuss some properties of beta function of several variables which are the extension of beta function of two variables. We define k-beta function of several variables and derive some properties of this function which are the extension of k-beta function of two variables, recently defined by Diaz and Pariguan [4]. Also, we extend the formula Γk(2z) proved by Kokologiannaki [5] via properties of k-beta function.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270884
@article{bwmeta1.element.doi-10_1515_math-2015-0030,
     author = {Abdur Rehman and Shahid Mubeen and Rabia Safdar and Naeem Sadiq},
     title = {Properties of k-beta function with several variables},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0030}
}
Abdur Rehman; Shahid Mubeen; Rabia Safdar; Naeem Sadiq. Properties of k-beta function with several variables. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0030/

[1] Anderson G.D., Vamanmurthy M.K., Vuorinen M.K., Conformal Invarients, Inequalities and Quasiconformal Maps, Wiley, New York, 1997

[2] Andrews G.E., Askey R., Roy R., Special Functions Encyclopedia of Mathemaics and its Application 71, Cambridge University Press, 1999

[3] Carlson B.C., Special Functions of Applied Mathemaics, Academic Press, New York, 1977

[4] Diaz R., Pariguan E., On hypergeometric functions and k-Pochhammer symbol, Divulgaciones Mathematics, 2007, 15(2), 179- 192 | Zbl 1163.33300

[5] Kokologiannaki C.G., Properties and inequalities of generalized k-gamma, beta and zeta functions, International Journal of Contemp, Math. Sciences, 2010, 5(14), 653-660 | Zbl 1202.33003

[6] Kokologiannaki C.G., Krasniqi V., Some properties of k-gamma function, LE MATHEMATICS, 2013, LXVIII, 13-22 | Zbl 1290.33001

[7] Krasniqi V., A limit for the k-gamma and k-beta function, Int. Math. Forum, 2010, 5(33), 1613-1617 | Zbl 1206.33005

[8] Mansoor M., Determining the k-generalized gamma function Γk(x), by functional equations, International Journal Contemp. Math. Sciences, 2009, 4(21), 1037-1042 | Zbl 1186.33002

[9] Mubeen S., Habibullah G.M., An integral representation of some k-hypergeometric functions, Int. Math. Forum, 2012, 7(4), 203- 207 | Zbl 1251.33004

[10] Mubeen S., Habibullah G.M., k-Fractional integrals and applications, International Journal of Mathematics and Science, 2012, 7(2), 89-94 | Zbl 1248.33005

[11] Mubeen S., Rehman A., Shaheen F., Properties of k-gamma, k-beta and k-psi functions, Bothalia Journal, 2014, 4, 371-379

[12] Rainville E.D., Special Functions, The Macmillan Company, New Yark(USA), 1960

[13] Rudin W., Real and Complex Analysis, 2nd edition McGraw-Hill, New York, 1974