In this paper, we discuss some properties of beta function of several variables which are the extension of beta function of two variables. We define k-beta function of several variables and derive some properties of this function which are the extension of k-beta function of two variables, recently defined by Diaz and Pariguan [4]. Also, we extend the formula Γk(2z) proved by Kokologiannaki [5] via properties of k-beta function.
@article{bwmeta1.element.doi-10_1515_math-2015-0030, author = {Abdur Rehman and Shahid Mubeen and Rabia Safdar and Naeem Sadiq}, title = {Properties of k-beta function with several variables}, journal = {Open Mathematics}, volume = {13}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0030} }
Abdur Rehman; Shahid Mubeen; Rabia Safdar; Naeem Sadiq. Properties of k-beta function with several variables. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0030/
[1] Anderson G.D., Vamanmurthy M.K., Vuorinen M.K., Conformal Invarients, Inequalities and Quasiconformal Maps, Wiley, New York, 1997
[2] Andrews G.E., Askey R., Roy R., Special Functions Encyclopedia of Mathemaics and its Application 71, Cambridge University Press, 1999
[3] Carlson B.C., Special Functions of Applied Mathemaics, Academic Press, New York, 1977
[4] Diaz R., Pariguan E., On hypergeometric functions and k-Pochhammer symbol, Divulgaciones Mathematics, 2007, 15(2), 179- 192 | Zbl 1163.33300
[5] Kokologiannaki C.G., Properties and inequalities of generalized k-gamma, beta and zeta functions, International Journal of Contemp, Math. Sciences, 2010, 5(14), 653-660 | Zbl 1202.33003
[6] Kokologiannaki C.G., Krasniqi V., Some properties of k-gamma function, LE MATHEMATICS, 2013, LXVIII, 13-22 | Zbl 1290.33001
[7] Krasniqi V., A limit for the k-gamma and k-beta function, Int. Math. Forum, 2010, 5(33), 1613-1617 | Zbl 1206.33005
[8] Mansoor M., Determining the k-generalized gamma function Γk(x), by functional equations, International Journal Contemp. Math. Sciences, 2009, 4(21), 1037-1042 | Zbl 1186.33002
[9] Mubeen S., Habibullah G.M., An integral representation of some k-hypergeometric functions, Int. Math. Forum, 2012, 7(4), 203- 207 | Zbl 1251.33004
[10] Mubeen S., Habibullah G.M., k-Fractional integrals and applications, International Journal of Mathematics and Science, 2012, 7(2), 89-94 | Zbl 1248.33005
[11] Mubeen S., Rehman A., Shaheen F., Properties of k-gamma, k-beta and k-psi functions, Bothalia Journal, 2014, 4, 371-379
[12] Rainville E.D., Special Functions, The Macmillan Company, New Yark(USA), 1960
[13] Rudin W., Real and Complex Analysis, 2nd edition McGraw-Hill, New York, 1974