A new kind of the solution of degenerate parabolic equation with unbounded convection term
Huashui Zhan
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

A new kind of entropy solution of Cauchy problem of the strong degenerate parabolic equation [...] is introduced. If u0 ∈ L∞(RN), E = {Ei} ∈ (L2(QT))N and divE ∈ L2(QT), by a modified regularization method and choosing the suitable test functions, the BV estimates are got, the existence of the entropy solution is obtained. At last, by Kruzkov bi-variables method, the stability of the solutions is obtained.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270899
@article{bwmeta1.element.doi-10_1515_math-2015-0029,
     author = {Huashui Zhan},
     title = {A new kind of the solution of degenerate parabolic equation with unbounded convection term},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {06416640},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0029}
}
Huashui Zhan. A new kind of the solution of degenerate parabolic equation with unbounded convection term. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0029/

[1] Anzellotti G. and Giaquinta M., Funzioni BV e trace. Rend. Sem. Math. Padova, 1978, 60, 1-21

[2] Baccardo L., Orsina L. and Porretta A., Some noncoercive parabolic equations with lower order terms, J. Evol.Equ., 2003, 3, 407- 418 | Zbl 1032.35104

[3] Bendanamane M. and Karlsen K. H., Reharmonized entropy solutions for quasilinear anisotropic degenerate parabolic equations, SLAM J. Math. Annal., 2004, 36(2), 405-422

[4] Bénilan Ph., Crandall M. G. and Pierre M., Solutions of the porous medium equation under optimal conditions on initial values, Indiana Univ. Math. J., 1984, 33, 51-87 | Zbl 0552.35045

[5] Brezis H. and Crandall M. G., Uniqueness of solutions of the initial value problem for ut Δ φ (u) = 0, J. Math.Pures et Appl., 1979, 58, 564-587

[6] Carrillo J., Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal.,1999, 147, 269-361 | Zbl 0935.35056

[7] Chen G.Q. and Karlsen K.H., Quasilinear anisotropic degenerate parabolic equations with time-space degenerate diffusion coefficients, Comm. Pure. Appl. Anal., 2005, 4(2), 2005, 241-267 [Crossref] | Zbl 1084.35034

[8] Chen G.Q. and Perthame B., Well-Posedness for non-isotropic degenerate parabolic-hyperbolic equations, Ann. I. H. Poincare- AN, 2003, 20(4), 645-668 [Crossref] | Zbl 1031.35077

[9] Cockburn B. and Gripenberg G. , Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations, J. Diff. Equations,1999,151, 231-251 | Zbl 0921.35017

[10] Deck T. and Ruse S. K., Parabolic differential equations with unbounded coefficients-a generalization of the parametric method, Acta Appl. Math., 2002, 74, 71-91 | Zbl 1021.35042

[11] Evans L.C., Weak convergence methods for nonlinear partial differential equations, Conference Board of the Mathematical Sciences, Regional Conferences Series in Mathematics, 74, American Mathematical Society, 1998, 1-66

[12] Fabrie P. and Gallouet T. , Modeling wells in porous media flows, Math. Models Methods Appl. Sci., 2000, 10, 673-709 | Zbl 1018.76044

[13] Ishige K. and Murata M. , An intrinsic metric approach to uniqueness of the positive Cauchy problem for parabolic equations, Math. Z., 1998, 227, 313-335 | Zbl 0893.35042

[14] Karlsen K. H. and Ohlberger M., A note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations, J. of Math. Ann. Appl., 2002, 275, 439-458 | Zbl 1072.35545

[15] Kružkov N., First order quasilinear equations in several independent variables, Math. USSR-Sb., 1970, 10, 217-243

[16] Pinchover Y., On uniqueness and nonuniqueness of the positive Cauchy problem for parabolic equations with unbounded coefficients, Math. Z., 1996, 223, 569-586 | Zbl 0869.35010

[17] Vol0pert A.I., BV space and quasilinear equations, Mat. Sb., 1967, 73, 255-302

[18] Vol0pert A.I. and Hudjaev S.I. , Cauchy’s problem for degenerate second order quasilinear parabolic equations, Mat. Sbornik, 1969, 78(120), 374-396; Engl. Transl.: Math.USSR Sb., 1969, 7(3), 365-387

[19] Vol0pert A.I. and Hudjaeve S.I., Analysis of class of discontinuous functions and the equations of mathematical physics, Izda. Nauka Moskwa, 1975 (in Russian)

[20] Wu Zh. and Yin J., Some properties of functions in BVx and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations, Northeastern Math. J., 1989, 5(4), 395-422

[21] Wu Z. and Zhao J., The first boundary value problem for quasilinear degenerate parabolic equations of second order in several variables, Chin. Ann. of Math., 1983, 4B(3), 319-358

[22] Wu Z., Zhao J., Yin J. and li H., Nonlinear Diffusion Equations, Word Scientific Publishing, Singapore, 2001. | Zbl 0997.35001

[23] Zhan H. and Zhao J., The stability of solutions for second order quasilinear degenerate parabolic equations, Acta Math. Sinica, 2007, 50, 615-628 (in chinese) | Zbl 1142.35487

[24] Zhao J., Uniqueness of solutions of quasilinear degenerate parabolic equations, Northeastern Math. J., 1985, 1(2), 153-165

[25] Zhao J. and Zhan H., Uniqueness and stability of solution for Cauchy problem of degenerate quasilinear parabolic equations, Science in China Ser. A, 2005, 48, 583-593 | Zbl 1085.35084