On the smoothness of the free boundary in a nonlocal one-dimensional parabolic free boundary value problem
Rossitza Semerdjieva
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

We consider one-dimensional parabolic free boundary value problem with a nonlocal (integro-differential) condition on the free boundary. Results on Cm-smoothness of the free boundary are obtained. In particular, a necessary and sufficient condition for infinite differentiability of the free boundary is given.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:269966
@article{bwmeta1.element.doi-10_1515_math-2015-0026,
     author = {Rossitza Semerdjieva},
     title = {On the smoothness of the free boundary in a nonlocal one-dimensional parabolic free boundary value problem},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {1301.35221},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0026}
}
Rossitza Semerdjieva. On the smoothness of the free boundary in a nonlocal one-dimensional parabolic free boundary value problem. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0026/

[1] N. Bellomo, N. K. Li, P. K. Maini, On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 18 (2008), no. 4, 593–646. [WoS][Crossref] | Zbl 1151.92014

[2] J. R. Cannon, The one-dimensional heat equation, Encyclopedia of Mathematics and its Applications, vol. 23, Addison-Wesley, Menlo Park, 1984. | Zbl 0567.35001

[3] J. R. Cannon and C. D. Hill, On the infinite differentiability of the free boundary in a Stefan problem, J. Math. Anal. Appl. 22 (1968), 385–397. [Crossref] | Zbl 0167.10504

[4] J. R. Cannon and M. Primicerio, A two phase Stefan problem: regularity of the free boundary, Ann. Mat. Pure. Appl. 88 (1971), 217–228. | Zbl 0219.35048

[5] Chiang Li-Shang, Existence and differentiability of the solution of the two-phase Stefan problem for quasilinear parabolic equations, Chinese Math.–Acta. 7 (1965), 481–496.

[6] A. Corli, V. Guidi and M. Primicerio, On a diffusion problem arising in nanophased thin films, Adv. Math. Sci. Appl. 18 (2008), 517– 533. | Zbl 1183.35157

[7] S. Cui, A. Friedman, Analysis of a mathematical model of the growth of necrotic tumors, J. Math. Anal. Appl. 255 (2001), 636– 677. [Crossref] | Zbl 0984.35169

[8] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice–Hall, Englewood Cliffs, N.J., 1964. | Zbl 0144.34903

[9] A. Friedman, F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol. 38 (1999), 262–284. [Crossref] | Zbl 0944.92018

[10] A. Friedman, Mathematical analysis and challenges arising from models of tumor growth. Math. Models Methods Appl. Sci. 17 (2007), suppl., 1751–1772. [Crossref][WoS] | Zbl 1135.92013

[11] O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23, Amer. Math. Soc., Providence, R.I., 1968.

[12] L. I. Rubinstein, The Stefan problem. Translations of Mathematical Monographs, Vol. 27. AMS, Providence, R.I., 1971.

[13] D. Schaeffer, A new proof of infinite differentiability of the free boundary in the Stefan problem, J. Diff. Equat. 20 (1976), 266–269. [Crossref] | Zbl 0314.35044

[14] R. Semerdjieva, Global existence of classical solutions for a nonlocal one dimensional parabolic free boundary problem, Houston J. Math. 40 (2014), no. 1, 229–253. | Zbl 1301.35221