In this paper, we show that any generalized ordered space X is monotonically (countably) metacompact if and only if the subspace X - { x } is monotonically (countably) metacompact for every point x of X and monotone (countable) metacompact property is hereditary with respect to convex (open) subsets in generalized ordered spaces. In addition, we show the equivalence of two questions posed by H.R. Bennett, K.P. Hart and D.J. Lutzer.
@article{bwmeta1.element.doi-10_1515_math-2015-0024, author = {Ai-Jun Xu}, title = {Notes on monotonically metacompact generalized ordered spaces}, journal = {Open Mathematics}, volume = {13}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0024} }
Ai-Jun Xu. Notes on monotonically metacompact generalized ordered spaces. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0024/
[1] Bennett H.R., Hart K.P., Lutzer D.J., A note on monotonically metacompact spaces, Topology Appl., 2010, 157, 456-465 [WoS] | Zbl 1184.54023
[2] Engleking R., General Topology, 2nd ed., Sigma Ser. Pure Math., 6, Hedermann, Berlin, 1989
[3] Kemoto N., Normality of Products of GO-spaces and cardinals, Topology Proc., 1993, 18, 133-142 | Zbl 0832.54029
[4] Lutzer D.J., Ordered topological spaces, In: Surveys in General Topology, Reed G.M., Academic Press, New York, 1980, 247-296
[5] Popvassilev S.G., !1 C1 is not monotonically countably compact, Questions Answers Gen. Topology, 2009, 27, 133-135 | Zbl 1182.54028
[6] Xu A.J., Shi W.X., Notes on monotone Lindelöf property, Czechoslovak Math. J., 2009, 59, 943-955 | Zbl 1224.54073
[7] Xu A.J., Shi W.X., Monotone Lindelöf property and linearly ordered extensions, Bull. Aust. Math. Soc., 2010, 81, 418-424 | Zbl 1190.54023
[8] Xu A.J., Shi W.X., A result on monotonically metacompact spaces, Houston J. Math., 2013, 39, 1437-1442 | Zbl 1282.54018