Identities arising from higher-order Daehee polynomial bases
Dae San Kim ; Taekyun Kim
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

Here we will derive formulas for expressing any polynomial as linear combinations of two kinds of higherorder Daehee polynomial basis. Then we will apply these formulas to certain polynomials in order to get new and interesting identities involving higher-order Daehee polynomials of the first kind and of the second kind.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:268771
@article{bwmeta1.element.doi-10_1515_math-2015-0019,
     author = {Dae San Kim and Taekyun Kim},
     title = {Identities arising from higher-order Daehee polynomial bases},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {1307.05019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0019}
}
Dae San Kim; Taekyun Kim. Identities arising from higher-order Daehee polynomial bases. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0019/

[1] S. Araci and M. Acikgoz, A note on the Frobenius-euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math. 22 (2012), no. 3, 399–406. | Zbl 1261.05003

[2] A. Bayad and T. Kim, Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. 20 (2010), no. 2, 247–253. | Zbl 1209.11025

[3] D. Ding and J. Yang, Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials, Adv. Stud. Contemp. Math. 20 (2010), no. 1, 7–21. | Zbl 1192.05001

[4] G. V. Dunne and C. Schubert, Bernoulli number identities from quantum field theory and topological string theory, Commun. Number Theory Phys. 7 (2013), no. 2, 225–249. [WoS][Crossref] | Zbl 1297.11009

[5] C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000), no. 1, 173–199. [Crossref] | Zbl 0960.14031

[6] S. Gaboury, R. Tremblay, and B.-J. Fugère, Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials, Proc. Jangjeon Math. Soc. 17 (2014), no. 1, 115–123. | Zbl 06315773

[7] I. M. Gessel, On Miki’s identities for Bernoulli numbers, J. Number Theory 110 (2005), no. 1, 75–82. [WoS][Crossref] | Zbl 1073.11013

[8] D. S. Kim and T. Kim, Bernoulli basis and the product of several Bernoulli polynomials, Int. J. Math. Math. Sci. Art. ID 463659 (2012), 12 pp. | Zbl 1258.11041

[9] , Daehee numbers and polynomials, Appl. Math. Sci. (Ruse) 7 (2013), no. 120, 5969–5976.

[10] , Some identities of Bernoulli and Euler polynomials arising from umbral calculus, Adv. Stud. Contemp. Math. 23 (2013), no. 1, 159–171. | Zbl 1273.05013

[11] , Some identities of higher order Euler polynomials arising from Euler basis, Integral Transforms Spec. Funct. 24 (2013), no. 9, 734–738. [WoS] | Zbl 06216416

[12] D. S. Kim, T. Kim, S.-H. Lee, and J.-J. Seo, Higher-order Daehee numbers and polynomials, Int. J. Math. Anal. (Ruse) 8 (2014), no. 6, 273–283.

[13] D. S. Kim, T. Kim, and J.-J. Seo, Higher-order Daehee polynomials of the first kind with umbral calculus, Adv. Stud. Contemp. Math. 24 (2014), no. 1, 5–18. | Zbl 1301.11018

[14] T. Kim, An invariant p-adic integral associated with Daehee numbers, Integral Transforms Spec. Funct. 13 (2002), no. 1, 65–69. | Zbl 1016.11008

[15] , Identities involving Laguerre polynomials derived from umbral calculus, Russ. J. Math. Phys. 21 (2014), no. 1, 36–45. [WoS] | Zbl 1314.33010

[16] T. Kim, D. S. Kim, D. V. Dolgy, and S. H. Rim, Some identities on the Euler numbers arising from Euler basis polynomials, Ars. Combin. 109 (2013), 433–446. | Zbl 1289.05004

[17] T. Kim and Y. Simsek, Analytic continuation of the multiple Daehee q-l-functions associated with Daehee numbers, Russ. J. Math. Phys. (2008). [WoS] | Zbl 1196.11157

[18] A. Kudo, A congruence of generalized Bernoulli number for the character of the first kind, Adv. Stud. Contemp. Math. 2 (2000), 1–8. [Crossref] | Zbl 0982.11067

[19] Q.-M. Luo and F. Qi, Relationskind between generalied Bernoulli numbers and polynomials and generalized Euler numbers and polynomials, Adv. Stud. Contemp. Math. 7 (2003), no. 1, 11–18. | Zbl 1042.11012

[20] H. Miki, A relation between Bernoulli numbers, J. Number Theory 10 (1978), no. 3, 297–302. [Crossref] | Zbl 0379.10007

[21] H. Ozden, I. N. Cangul, and Y. Simsek, Remarks on q-Bernoulli numbers associated with Daehee numbers, Adv. Stud. Contemp. Math. 18 (2009), no. 1, 41–48. | Zbl 1188.05005

[22] S. Roman, The umbral calculus, Pure and Applied Mathematics, vol. 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984. MR 741185 (87c:05015) | Zbl 0536.33001

[23] E. Sen, Theorems on Apostol-Euler polynomials of higher order arising from Euler basis, Adv. Stud. Contemp. Math. 23 (2013), no. 2, 337–345. | Zbl 1297.11008

[24] J.-J. Seo, S. H. Rim, T. Kim, and S. H. Lee, Sums products of generalized Daehee numbers, Proc. Jangjeon Math. Soc. 17 (2014), no. 1, 1–9. | Zbl 1307.11029

[25] K. Shiratani and S. Yokoyama, An application of p-adic convolutions, Mem. Fac. Sci. Kyushu Univ. Ser. A 36 (1982), no. 1, 73–83. | Zbl 0507.12011

[26] Y. Simsek, S.-H. Rim, L.-C. Jang, D.-J. Kang, and J.-J. Seo, A note on q-Daehee sums, J. Anal. Comput. 1 (2005), no. 2, 151– 160.

[27] Z. Zhang and H. Yang, Some closed formulas for generalized Bernoulli-Euler numbers and polynomials, Proc. Jangjeon Math. Soc. 11 (2008), no. 2, 191–198. | Zbl 1178.05003