We present new iterative methods for solving the Sylvester equation belonging to the class of SOR-like methods, based on the SOR (Successive Over-Relaxation) method for solving linear systems. We discuss convergence characteristics of the methods. Numerical experimentation results are included, illustrating the theoretical results and some other noteworthy properties of the Methods.
@article{bwmeta1.element.doi-10_1515_math-2015-0017, author = {Jakub Kierzkowski}, title = {New SOR-like methods for solving the Sylvester equation}, journal = {Open Mathematics}, volume = {13}, year = {2015}, zbl = {1309.65049}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0017} }
Jakub Kierzkowski. New SOR-like methods for solving the Sylvester equation. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0017/
[1] Bartels, R.H., Stewart G.W., Algorithm 432: the solution of the matrix equation AX - BX D C, Communications of the ACM, 1972, 15(9), 820-826
[2] Beineke, L.W., Wilson, R.J. (Eds.), Topics in Algebraic Graph Theory, Encyclopedia Math. Appl., Cambridge University Press, 102, Cambridge University Press, 2005
[3] Datta, B., Numerical Methods for Linear Control Systems, Elsevier Science, 2004
[4] Golub G.H., Nash S., Van Loan C., Hessenberg–Schur method for the problem AX + C XB = C, IEEE Trans. Automat. Control, 1979, AC-24(6), 909-913 [Crossref] | Zbl 0421.65022
[5] Hu D.Y., Reichel L., Krylov-subspace methods for the Sylvester equation, Linear Algebra Appl., 1992, 172, 283-313 | Zbl 0777.65028
[6] Lancaster, P., Tismenetsky, M., The theory of matrices: with applications, 2nd ed., Academic Press, Orlando, 1985 | Zbl 0558.15001
[7] Roth W.E., The equations AX - YB = C and AX - XB = C in matrices, Proc. Amer. Math. Soc., 1952, 3(3), 392-396 | Zbl 0047.01901
[8] Simoncini, V., On the numerical solution of AX - XB = C, BIT, 1996, 36(4), 814-830 [Crossref] | Zbl 0863.65022
[9] Starke G., Niethammer W., SOR for AX - XB = C, Linear Algebra Appl., 1991, 154/156, 355-375
[10] Woźnicki, Z.I., Solving linear systems: an analysis of matrix prefactorization iterative methods, Matrix Editions, 2009 | Zbl 1170.65002