In this paper we shall study a notion of relative annihilator-preserving congruence relation and relative annihilator-preserving homomorphism in the class of bounded distributive semilattices. We shall give a topological characterization of this class of semilattice homomorphisms. We shall prove that the semilattice congruences that are associated with filters are exactly the relative annihilator-preserving congruence relations.
@article{bwmeta1.element.doi-10_1515_math-2015-0016, author = {Sergio A. Celani}, title = {Relative annihilator-preserving congruence relations and relative annihilator-preserving homomorphisms in bounded distributive semilattices}, journal = {Open Mathematics}, volume = {13}, year = {2015}, zbl = {1334.06005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0016} }
Sergio A. Celani. Relative annihilator-preserving congruence relations and relative annihilator-preserving homomorphisms in bounded distributive semilattices. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0016/
[1] Bezhanishvili G, and Jansana, R., Esakia Style Duality for Implicative Semilattices, Applied Categorical Structures, 2013, 21 (2), 181-208 [Crossref][WoS] | Zbl 1294.06005
[2] Chagrov, A., and Zakharyaschev M., Modal Logic, Oxford University Press, 1997
[3] Celani S. A and Calomino I. M., Some remarks on distributive semilattices, Comment. Math. Univ. Caroline, 2013, 54 (3), 407- 428 | Zbl 1289.06004
[4] Celani S. A., Remarks on annihilators preserving congruence relations, Mathematica Slovaca, 2012, 62 (3), 689-698 [WoS][Crossref] | Zbl 1312.06002
[5] Celani S. A., Topological representation of distributive semilattices, Scientiae Math. Japonicae online, 2003, (8), 41-51
[6] Celani, S. A., Representation of Hilbert algebras and implicative semilattices, Central European Journal of Mathematics, 2003, 4, 561-572 [Crossref][WoS] | Zbl 1034.03056
[7] Chajda I., Halaš R. and Kühr J., Semilattice Structures. Heldermann Verlag, Research and Exposition in Mathematics, 30, 2007
[8] Cornish, W. H., Normal lattices, Australian Mathematical Society. Journal. Pure Mathematics and Statistics, 1972, 14, 200-215 | Zbl 0247.06009
[9] Cornish W., Annulets and a-ideals in a distributive lattice, J. Austral Math. Soc., 1973, 15, 70-77 | Zbl 0274.06008
[10] Grätzer G., General Lattice Theory. Birkhäuser Verlag, 1998 | Zbl 0909.06002
[11] Janowitz M. F., Annihilator preserving congruence relations of lattices, Algebra Universalis,1975, 5 (1), 391–394 [Crossref][WoS] | Zbl 0333.06005
[12] Mandelker M., Relative annihilators in lattices, Duke Math. J., 1970, 37, 377–386 [Crossref] | Zbl 0206.29701
[13] Pawar S. P. and Lokhande A. D., Normal semilattices, Indian J. Pure and Appl. Math., 1998, 29, (12), 1245-1249 | Zbl 0921.06003
[14] Varlet J. C., Relative annihilators in semilattices, Bull. Austral. Math. Soc., 1973, 9, 169-185 [Crossref] | Zbl 0258.06009