Relative annihilator-preserving congruence relations and relative annihilator-preserving homomorphisms in bounded distributive semilattices
Sergio A. Celani
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

In this paper we shall study a notion of relative annihilator-preserving congruence relation and relative annihilator-preserving homomorphism in the class of bounded distributive semilattices. We shall give a topological characterization of this class of semilattice homomorphisms. We shall prove that the semilattice congruences that are associated with filters are exactly the relative annihilator-preserving congruence relations.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:268842
@article{bwmeta1.element.doi-10_1515_math-2015-0016,
     author = {Sergio A. Celani},
     title = {Relative annihilator-preserving congruence relations and relative annihilator-preserving homomorphisms in bounded distributive semilattices},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {1334.06005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0016}
}
Sergio A. Celani. Relative annihilator-preserving congruence relations and relative annihilator-preserving homomorphisms in bounded distributive semilattices. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0016/

[1] Bezhanishvili G, and Jansana, R., Esakia Style Duality for Implicative Semilattices, Applied Categorical Structures, 2013, 21 (2), 181-208 [Crossref][WoS] | Zbl 1294.06005

[2] Chagrov, A., and Zakharyaschev M., Modal Logic, Oxford University Press, 1997

[3] Celani S. A and Calomino I. M., Some remarks on distributive semilattices, Comment. Math. Univ. Caroline, 2013, 54 (3), 407- 428 | Zbl 1289.06004

[4] Celani S. A., Remarks on annihilators preserving congruence relations, Mathematica Slovaca, 2012, 62 (3), 689-698 [WoS][Crossref] | Zbl 1312.06002

[5] Celani S. A., Topological representation of distributive semilattices, Scientiae Math. Japonicae online, 2003, (8), 41-51

[6] Celani, S. A., Representation of Hilbert algebras and implicative semilattices, Central European Journal of Mathematics, 2003, 4, 561-572 [Crossref][WoS] | Zbl 1034.03056

[7] Chajda I., Halaš R. and Kühr J., Semilattice Structures. Heldermann Verlag, Research and Exposition in Mathematics, 30, 2007

[8] Cornish, W. H., Normal lattices, Australian Mathematical Society. Journal. Pure Mathematics and Statistics, 1972, 14, 200-215 | Zbl 0247.06009

[9] Cornish W., Annulets and a-ideals in a distributive lattice, J. Austral Math. Soc., 1973, 15, 70-77 | Zbl 0274.06008

[10] Grätzer G., General Lattice Theory. Birkhäuser Verlag, 1998 | Zbl 0909.06002

[11] Janowitz M. F., Annihilator preserving congruence relations of lattices, Algebra Universalis,1975, 5 (1), 391–394 [Crossref][WoS] | Zbl 0333.06005

[12] Mandelker M., Relative annihilators in lattices, Duke Math. J., 1970, 37, 377–386 [Crossref] | Zbl 0206.29701

[13] Pawar S. P. and Lokhande A. D., Normal semilattices, Indian J. Pure and Appl. Math., 1998, 29, (12), 1245-1249 | Zbl 0921.06003

[14] Varlet J. C., Relative annihilators in semilattices, Bull. Austral. Math. Soc., 1973, 9, 169-185 [Crossref] | Zbl 0258.06009