The chaos of the differentiation operator on generalized weighted Bergman spaces of entire functions has been characterized recently by Bonet and Bonilla in [CAOT 2013], when the differentiation operator is continuous. Motivated by those, we investigate conditions to ensure that finite many powers of differentiation operators are disjoint hypercyclic on generalized weighted Bergman spaces of entire functions.
@article{bwmeta1.element.doi-10_1515_math-2015-0013, author = {Liang Zhang and Ze-Hua Zhou}, title = {Dynamics of differentiation operators on generalized weighted Bergman spaces}, journal = {Open Mathematics}, volume = {13}, year = {2015}, zbl = {1309.47008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0013} }
Liang Zhang; Ze-Hua Zhou. Dynamics of differentiation operators on generalized weighted Bergman spaces. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0013/
[1] Bernal-González L., Disjoint hypercyclic operators, Studia Math., 2007, 182(2), 113-131. | Zbl 1134.47006
[2] Bonet J., Dynamics of differentiation operator on weighted spaces of entire functions, Math. Z., 2009, 261, 649-657. [WoS] | Zbl 1157.47006
[3] Bonet J., Bonilla A., Chaos of the differentiation operator on weighted Banach spaces of entire functions, Complex Anal. Oper. Theory, 2013, 7, 33-42. [WoS] | Zbl 06214910
[4] Bermúdez T., Bonilla A., Conejero J. A., Peris A., Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces, Studia Math., 2005, 170, 57-75. | Zbl 1064.47006
[5] Bonilla A., Grosse-Erdmann K. G., Frequently hypercyclic operators and vectors, Ergodic Theory Dynam. Systems, 2007, 27, 383-404. Erratum: Ergodic Theory Dynam. Systems, 2009, 29, 1993-1994. | Zbl 1119.47011
[6] Bayart F., Matheron É., Dynamics of linear operators, Cambridge Tracts in Mathematics, 179, Camberidge University Press, Cambridge, 2009. | Zbl 1187.47001
[7] Bès J., Martin Ö., Peris A., Disjoint hypercyclic linear fractional composition operators, J. Math. Appl., 2011, 381, 843-856. | Zbl 1235.47012
[8] Bès J., Martin Ö., Peris A., Shkarin S., Disjoint mixing operators, J. Funct. Anal., 2012, 263, 1283-1322. | Zbl 1266.47013
[9] Bès J., Martin Ö., Sanders R., Weighted shifts and disjoint hypercyclicity, 2012, manuscript. [WoS] | Zbl 1318.47010
[10] Bès J., Peris A., Disjointness in hypercyclicity, J. Math. Anal. Appl., 2007, 336, 297-315. | Zbl 1129.47007
[11] Costakis G., Sambarino M., Topologically mixing hypercyclic operators, Proc. Amer. Math. Soc., 2004, 132(2), 385-389. | Zbl 1054.47006
[12] Chen R. Y., Zhou Z. H., Hypercyclicity of weighted composition operators on the unit ball of CN, J. Korean Math. Soc., 2011, 48(5), 969-984. | Zbl 1227.47012
[13] Grosse-Erdmann K. G., Peris Manguillot A., Linear Chaos, Springer, New York, 2011.
[14] Harutyunyan A., Lusky W., On the boundedness of the differentiation operator between weighted spaces of holomorphic functions, Studia Math., 2008, 184, 233-247. | Zbl 1142.46013
[15] Lusky W., On generalized Bergman space, Studia Math., 1996, 119, 77-95. | Zbl 0857.46014
[16] Lusky W., On the Fourier series of unbounded harmonic functions, J. London. Math. Soc., 2000, 61, 568-580. | Zbl 0956.46019
[17] Salas H. N., Dual disjoint hypercyclic operators, J. Math. Anal. Appl., 2011, 374, 106-117. | Zbl 1210.47024
[18] Shkarin S., A short proof of existence of disjoint hypercyclic operators, J. Math. Anal. Appl., 2010, 367, 713-715. | Zbl 1196.47006