In this paper we present a nonsingularity result which is a generalization of Nekrasov property by using two different permutations of the index set. The main motivation comes from the following observation: matrices that are Nekrasov matrices up to the same permutations of rows and columns, are nonsingular. But, testing all the permutations of the index set for the given matrix is too expensive. So, in some cases, our new nonsingularity criterion allows us to use the results already calculated in order to conclude that the given matrix is nonsingular. Also, we present new max-norm bounds for the inverse matrix and illustrate these results by numerical examples, comparing the results to some already known bounds for Nekrasov matrices.
@article{bwmeta1.element.doi-10_1515_math-2015-0012, author = {Ljiljana Cvetkovi\'c and Vladimir Kosti\'c and Maja Nedovi\'c}, title = {Generalizations of Nekrasov matrices and applications}, journal = {Open Mathematics}, volume = {13}, year = {2015}, zbl = {1309.15008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0012} }
Ljiljana Cvetković; Vladimir Kostić; Maja Nedović. Generalizations of Nekrasov matrices and applications. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0012/
[1] Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. Classics in Applied Mathematics, vol. 9, SIAM, Philadelphia, 1994. | Zbl 0815.15016
[2] Cvetkovi´c, Lj.: H-matrix theory vs. eigenvalue localization. Numer. Algor. 42(2006), 229-245.
[3] Cvetkovi´c, Lj, Ping-Fan Dai, Doroslovaˇcki, K., Yao-Tang Li: Infinity norm bounds for the inverse of Nekrasov matrices. Appl. Math. Comput. 219, 10 (2013), 5020-5024. | Zbl 1283.15014
[4] Cvetkovi´c, Lj., Kosti´c, V., Rauški, S., A new subclass of H-matrices. Appl. Math. Comput. 208/1(2009), 206-210.[WoS]
[5] Gudkov, V.V.: On a certain test for nonsingularity of matrices. Latv. Mat. Ezhegodnik 1965, Zinatne, Riga (1966), 385-390.
[6] Li, W.: On Nekrasov matrices. Linear Algebra Appl. 281(1998), 87-96. | Zbl 0937.15019
[7] Robert, F.: Blocs H-matrices et convergence des methodes iteratives classiques par blocs. Linear Algebra Appl. 2(1969), 223-265.[Crossref] | Zbl 0182.21302
[8] Szulc, T.: Some remarks on a theorem of Gudkov. Linear Algebra Appl. 225(1995), 221-235. | Zbl 0833.15020
[9] Varah, J. M.: A lower bound for the smallest value of a matrix. Linear Algebra Appl. 11(1975), 3-5. | Zbl 0312.65028