Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition
Marek T. Malinowski
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

We analyze the set-valued stochastic integral equations driven by continuous semimartingales and prove the existence and uniqueness of solutions to such equations in the framework of the hyperspace of nonempty, bounded, convex and closed subsets of the Hilbert space L2 (consisting of square integrable random vectors). The coefficients of the equations are assumed to satisfy the Osgood type condition that is a generalization of the Lipschitz condition. Continuous dependence of solutions with respect to data of the equation is also presented. We consider equations driven by semimartingale Z and equations driven by processes A;M from decomposition of Z, where A is a process of finite variation and M is a local martingale. These equations are not equivalent. Finally, we show that the analysis of the set-valued stochastic integral equations can be extended to a case of fuzzy stochastic integral equations driven by semimartingales under Osgood type condition. To obtain our results we use the set-valued and fuzzy Maruyama type approximations and Bihari’s inequality.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:268846
@article{bwmeta1.element.doi-10_1515_math-2015-0011,
     author = {Marek T. Malinowski},
     title = {Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {1307.93381},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0011}
}
Marek T. Malinowski. Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0011/

[1] Ahmad B., Sivasundaram S., Dynamics and stability of impulsive hybrid setvalued integro-differential equations with delay, Nonlinear Anal., 2006, 65(11), 2082-2093 | Zbl 1114.34062

[2] Ahmad B., Sivasundaram S., The monotone iterative technique for impulsive hybrid set valued integro-differential equations, Nonlinear Anal., 2006, 65(12), 2260-2276 | Zbl 1111.45006

[3] Ahmad B., Sivasundaram S., Setvalued perturbed hybrid integro-differential equations and stability in term of two measures, Dynam. Systems Appl., 2007, 16(2), 299-310 | Zbl 1151.45006

[4] Ahmad B., Sivasundaram S., Stability in terms of two measures of setvalued perturbed impulsive delay differential equations, Commun. Appl. Anal., 12(1), 2008, 57-68 | Zbl 1161.34043

[5] Ahmed N.U., Nonlinear stochastic differential inclusions on Banach spaces, Stoch. Anal. Appl., 1994, 12(1), 1-10 | Zbl 0789.60052

[6] Aubin J.-P., Fuzzy differential inclusions, Problems Control Inform. Theory, 1990, 19(1), 55-67. | Zbl 0718.93039

[7] Aubin J.-P., Cellina A., Differential Inclusions, Set-Valued Maps and Viability Theory, Springer, Berlin, 1984 | Zbl 0538.34007

[8] Aubin J.-P., Da Prato G., The viability theorem for stochastic differential inclusions, Stoch. Anal. Appl., 1998, 16(1), 1-15 | Zbl 0931.60059

[9] Aubin J.-P., Da Prato G., Frankowska H., Stochastic invariance for differential inclusions, Set-Valued Anal., 2000, 8(1-2), 181-201 | Zbl 0976.49016

[10] Aubin J.-P., Frankowska H., Set-Valued Analysis, Birkhäuser, Basel, 1990

[11] Balasubramaniam P., Ntouyas S.K., Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space, J. Math. Anal. Appl., 2006, 324(1), 161-176 | Zbl 1118.93007

[12] Balasubramaniam P., Vinayagam D., Existence of solutions of nonlinear neutral stochastic differential inclusions in a Hilbert space, Stoch. Anal. Appl., 2005, 23(1), 137-151 | Zbl 1081.34083

[13] Bihari I., A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar., 1956, 7, 81-94 | Zbl 0070.08201

[14] Bouchen A., El Arni A., Ouknine Y., Integration stochastique multivoque et inclusions differentielles stochastiques, Stochastics Stochastics Rep., 2000, 68(3-4), 297-327 (in French) | Zbl 0957.60069

[15] Brandão Lopes Pinto A.I., De Blasi F.S., Iervolino F., Uniqueness and existence theorems for differential equations with convex valued solutions, Boll. Unione Mat. Ital., 1970, 3(4), 47-54 | Zbl 0211.12103

[16] Chung K.L., Williams R.J., Introduction to Stochastic Integration, Birkhäuser, Boston, 1983 | Zbl 0527.60058

[17] Da Prato G., Frankowska H., A stochastic Filippov theorem, Stoch. Anal. Appl., 1994, 12(4), 409-426 | Zbl 0810.60059

[18] De Blasi F.S., Iervolino F., Equazioni differenziali con soluzioni a valore compatto convesso, Boll. Unione Mat. Ital., 1969, 2(4), 194-501 (in Italian) | Zbl 0195.38501

[19] Deimling K., Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992 | Zbl 0760.34002

[20] Ekhaguere G.O.S., Quantum stochastic differential inclusions of hypermaximal monotone type, Internat. J. Theoret. Phys., 1995, 34(3), 323-353[Crossref] | Zbl 0820.60049

[21] Galanis G.N., Gnana Bhaskar T., Lakshmikantham V., Palamides P.K., Set valued functions in Frechet spaces: continuity, Hukuhara differentiability and applications to set differential equations, Nonlinear Anal., 2005, 61(4), 559-575 | Zbl 1190.49025

[22] Hagen K., Multivalued Fields in Condensed Matter, Electrodynamics and Gravitation, World Scientific, Singapore, 2008 | Zbl 1157.70001

[23] Hiai F., Umegaki H., Integrals, conditional expectation, and martingales of multivalued functions, J. Multivar. Anal., 1977, 7(1), 149-182[Crossref] | Zbl 0368.60006

[24] Hong S., Differentiability of multivalued functions on time scales and applications to multivalued dynamic equations, Nonlinear Anal., 2009, 71(9), 622-3637

[25] Hong S., Liu J., Phase spaces and periodic solutions of set functional dynamic equations with infinite delay, Nonlinear Anal., 2011, 74(9), 2966-2984 | Zbl 1221.34244

[26] Hu S., Papageorgiou, N., Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer Academic Publishers, Boston, 1997 | Zbl 0887.47001

[27] Hu S., Papageorgiou N., Handbook of Multivalued Analysis, Vol. II: Applications, Kluwer Academic Publishers, Dordrecht, 2000 | Zbl 0943.47037

[28] Jakubowski A, Kamenski˘ı M., Raynaud de Fitte P., Existence of weak solutions to stochastic evolution inclusions, Stoch. Anal. Appl., 2005, 23(4), 723-749 | Zbl 1077.60044

[29] Kisielewicz M., Differential Inclusions and Optimal Control, Kluwer Academic Publishers, Dordrecht, 1991 | Zbl 0731.49001

[30] Kisielewicz M., Properties of solution set of stochastic inclusions, J. Appl. Math. Stochastic Anal., 1993, 6(3), 217-236 | Zbl 0796.93106

[31] Lakshmikantham V., Gnana Bhaskar T., Vasundhara Devi J., Theory of Set Differential Equations in a Metric Space, Cambridge Scientific Publ., Cambridge, 2006 | Zbl 1156.34003

[32] Lakshmikantham V., Mohapatra R.N., Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis Publishers, London, 2003 | Zbl 1072.34001

[33] Lakshmikantham V., Tolstonogov A.A., Existence and interrelation between set and fuzzy differential equations, Nonlinear Anal., 2003, 55(3), 255-268 | Zbl 1035.34064

[34] Li J., Li S., Ogura Y., Strong solutions of Itô type set-valued stochastic differential equations, Acta Math. Sin. (Engl. Ser.), 2010, 26(9), 1739-1748[Crossref] | Zbl 1202.60089

[35] Malinowski M.T., On set differential equations in Banach spaces - a second type Hukuhara differentiability approach, Appl. Math. Comput., 2012, 219(1), 289-305[Crossref] | Zbl 1297.34073

[36] Malinowski M.T., Interval Cauchy problem with a second type Hukuhara derivative, Inform. Sci., 2012, 213, 94-105 | Zbl 1257.34011

[37] Malinowski M.T., Second type Hukuhara differentiable solutions to the delay set-valued differential equations, Appl. Math. Comput., 2012, 218(18), 9427-9437[Crossref] | Zbl 1252.34071

[38] Malinowski M.T., On equations with a fuzzy stochastic integral with respect to semimartingales, Advan. Intell. Syst. Comput., 2013, 190, 93-101 | Zbl 1338.60165

[39] Malinowski M.T., On a new set-valued stochastic integral with respect to semimartingales and its applications, J. Math. Anal. Appl., 2013, 408(2), 669-680 | Zbl 1306.60062

[40] Malinowski M.T., Approximation schemes for fuzzy stochastic integral equations, Appl. Math. Comput., 2013, 219(24), 11278-11290[Crossref] | Zbl 1305.45007

[41] Malinowski M.T., Michta M., Set-valued stochastic integral equations driven by martingales, J. Math. Anal. Appl., 2012, 394(1), 30-47 | Zbl 1246.60090

[42] Malinowski M.T., Michta M., Sobolewska J., Set-valued and fuzzy stochastic differential equations driven by semimartingales, Nonlinear Anal., 2013, 79, 204-220 | Zbl 1260.60010

[43] Mao X., Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients, Stochastic Process. Appl., 1995, 58(2), 281-292[Crossref] | Zbl 0835.60049

[44] Mitoma I., Okazaki Y., Zhang J., Set-valued stochastic differential equation in M-type 2 Banach space, Comm. Stoch. Anal., 2010, 4(2), 215-237 | Zbl 1331.60098

[45] Motyl J., Stochastic functional inclusion driven by semimartingale, Stoch. Anal. Appl., 1998, 16(3), 717-732

[46] Osgood W.F., Beweis der Existenz einer Lösung der Differentialgleichung dy dx D f.x; y/ ohne Hinzunahme der Cauchy- Lipschitz’schen Bedingung, Monatsh. Math. Phys., 1898, 9(1), 331-345 (in German) | Zbl 29.0260.03

[47] Øksendal B., Stochastic Differential Equations: An Introduction and Applications, Springer Verlag, Berlin, 2003

[48] Protter P., Stochastic Integration and Differential Equations: A New Approach, Springer Verlag, New York, 1990

[49] Ren J., Wu J., Zhang X., Exponential ergodicity of non-Lipschitz multivalued stochastic differential equations, Bull. Sci. Math., 2010, 134(4), 391-404 | Zbl 1202.60091

[50] Ren J., Xu S., Zhang X., Large deviations for multivalued stochastic differential equations, J. Theoret. Probab., 2010, 23(4), 1142-1156 | Zbl 1204.60054

[51] Ren J., Wu J., On regularity of invariant measures of multivalued stochastic differential equations, Stochastic Process. Appl., 2012, 122(1), 93-105[Crossref] | Zbl 1230.60060

[52] Tolstonogov A.A., Differential Inclusions in a Banach Space, Kluwer Acad. Publ., Dordrecht, 2000 | Zbl 1021.34002

[53] Truong-Van B., Truong X.D.H., Existence results for viability problem associated to nonconvex stochastic differentiable inclusions, Stoch. Anal. Appl., 1999, 17(4), 667-685 | Zbl 0952.60055

[54] Tsokos C.P., Padgett W.J., Random Integral Equations with Applications to Life Sciences and Engineering, Academic Press, New York, 1974 | Zbl 0287.60065

[55] Tu N.N., Tung T.T., Stability of set differential equations and applications, Nonlinear Anal., 2009, 71(5-6), 1526-1533

[56] Wu J., Uniform large deviations for multivalued stochastic differential equations with Poisson jumps, Kyoto J. Math., 2011, 51(3), 535-559 | Zbl 1230.60062

[57] Xu S., Multivalued stochastic differential equations with non-Lipschitz coefficients, Chinese Ann. Math. Ser. B, 2009, 30(3), 321-332[Crossref] | Zbl 1179.60042

[58] Yun Y.S., Ryu S.U., Boundedness and continuity of solutions for stochastic differential inclusions on infinite dimensional space, Bull. Korean Math. Soc., 2007, 44(4), 807-816 | Zbl 1140.60332

[59] Zhang J., Li S., Mitoma I., Okazaki Y., On the solutions of set-valued stochastic differential equations in M-type 2 Banach spaces, Tohoku Math. J., 2009, 61(2), 417-440 | Zbl 1198.60027