Complete and sufficient statistics and perfect families in orthogonal and error orthogonal normal models
Aníbal Areia ; Francisco Carvalho ; João T. Mexia
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

We will discuss orthogonal models and error orthogonal models and their algebraic structure, using as background, commutative Jordan algebras. The role of perfect families of symmetric matrices will be emphasized, since they will play an important part in the construction of the estimators for the relevant parameters. Perfect families of symmetric matrices form a basis for the commutative Jordan algebra they generate. When normality is assumed, these perfect families of symmetric matrices will ensure that the models have complete and sufficient statistics. This will lead to uniformly minimum variance unbiased estimators for the relevant parameters.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:268731
@article{bwmeta1.element.doi-10_1515_math-2015-0009,
     author = {An\'\i bal Areia and Francisco Carvalho and Jo\~ao T. Mexia},
     title = {Complete and sufficient statistics and perfect families in orthogonal and error orthogonal normal models},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {1307.62139},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0009}
}
Aníbal Areia; Francisco Carvalho; João T. Mexia. Complete and sufficient statistics and perfect families in orthogonal and error orthogonal normal models. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0009/

[1] Carvalho, Francisco; Mexia, João T.; Oliveira, M. Manuela, Estimation in Models with Commutative Orthogonal Block Structure, J. Stat. Theory Pract., 2009, 3 (2), 525-535 | Zbl 1211.62093

[2] Drygas, H., Sufficiency and Completeness in the General Gauss-Markov Model, Sankhy¯ a, 1983, 45 (1), 88-89 | Zbl 0535.62007

[3] Ferreira, S.S.; Ferreira, D.; Fernandes, C.; Mexia, João T., Orthogonal models and perfect families of symmetric matrices, Bulletin of the ISI, Proceedings of ISI (22-28 August 2007, Lisbon, Portugal), Lisbon, 2007, 3252-3254

[4] Fonseca, M; Mexia, João T.; Zmy´slony, R., Binary operations on Jordan algebras and orthogonal normal models, Linear Algebra Appl., 2006, 417, 75-86 | Zbl 1113.62004

[5] Jordan, P.; von Neumann, J. and Wigner, E., On the algebraic generalization of the quantum mechanical formalism, Ann. of Math., 1934, 36, 26-64 | Zbl 60.0902.02

[6] Lehmann, E.L. and Casella, G., Theory of Point Estimation, 2nd ed., Springer, 1998 | Zbl 0916.62017

[7] Schott, James R., Matrix Analysis for Statistics, Wiley Series in Probability and Statistics, 1997

[8] Seely, J., Linear spaces and unbiased estimators, Ann. Math. Stat., 1970a, 41, 1735-1745[Crossref] | Zbl 0263.62041

[9] Seely, J., Linear spaces and unbiased estimators. Application to a mixed linear model, Ann. Math. Stat., 1970b, 41, 1735-1745[Crossref] | Zbl 0263.62041

[10] Seely, J., Quadratic subspaces and completeness, Ann. Math. Stat., 1971a, 42, 710-721[Crossref] | Zbl 0249.62067

[11] Seely, J., Zyskind, Linear spaces and minimum variance estimators, Ann. Math. Stat., 1971b, 42, 691-703[Crossref] | Zbl 0217.51602

[12] Seely, J., Minimal sufficient statistics and completeness for multivariate normal families, Sankhy¯ a, 1977, 39 (2), 170-185 | Zbl 0409.62004

[13] VanLeeuwen, Dawn M.; Seely, Justus F.; Birkes, David S., Sufficient conditions for orthogonal designs in mixed linear models, J. Statist. Plann. Inference, 1998, 73, 373-389 | Zbl 0933.62069

[14] VanLeeuwen, Dawn M.; Birkes, David S.; Seely, Justus F., Balance and Orthogonality in Designs for Mixed Classification Models, Ann. Statist., 1999, 27 (6), 1927-1947 | Zbl 0963.62059

[15] Zmy´slony, R; Drygas, H., Jordan Algebras and Bayesian Quadratic Estimation of Variance Components, Linear Algebra Appl., 1992, 168, 259-275 | Zbl 0760.62068