Determinants of (–1,1)-matrices of the skew-symmetric type: a cocyclic approach
Víctor Álvarez ; José Andrés Armario ; María Dolores Frau ; Félix Gudiel
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

An n by n skew-symmetric type (-1; 1)-matrix K =[ki;j ] has 1’s on the main diagonal and ±1’s elsewhere with ki;j =-kj;i . The largest possible determinant of such a matrix K is an interesting problem. The literature is extensive for n ≡ 0 mod 4 (skew-Hadamard matrices), but for n ≡ 2 mod 4 there are few results known for this question. In this paper we approach this problem constructing cocyclic matrices over the dihedral group of 2t elements, for t odd, which are equivalent to (-1; 1)-matrices of skew type. Some explicit calculations have been done up to t =11. To our knowledge, the upper bounds on the maximal determinant in orders 18 and 22 have been improved.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:268889
@article{bwmeta1.element.doi-10_1515_math-2015-0003,
     author = {V\'\i ctor \'Alvarez and Jos\'e Andr\'es Armario and Mar\'\i a Dolores Frau and F\'elix Gudiel},
     title = {Determinants of (--1,1)-matrices of the skew-symmetric type: a cocyclic approach},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {1307.05031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0003}
}
Víctor Álvarez; José Andrés Armario; María Dolores Frau; Félix Gudiel. Determinants of (–1,1)-matrices of the skew-symmetric type: a cocyclic approach. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0003/

[1] Álvarez V., Armario J.A., Frau M.D., Gudiel F., The maximal determinant of cocyclic (1; 1)-matrices over D2t , Linear Algebra Appl., 2012, 436, 858-873[WoS] | Zbl 1236.05043

[2] Álvarez V., Armario J.A., Frau M.D., Gudiel F., Embedding cocyclic D-optimal designs in cocyclic Hadamard matrices, Electron. J. Linear Algebra, 2012, 24, 66-82 | Zbl 1253.05050

[3] Álvarez V., Armario J.A., Frau M.D., Real P., A system of equations for describing cocyclic Hadamard matrices, J. Comb. Des., 2008, 16, 276-290[WoS][Crossref] | Zbl 1182.05019

[4] Álvarez V., Armario J.A., Frau M.D., Real P., The homological reduction method for computing cocyclic Hadamard matrices, J. Symb. Comput., 2009, 44, 558-570[WoS] | Zbl 1163.05004

[5] Armario J.A., Frau M.D., Self-dual codes from (1; 1)-matrices of skew type, preprint available at http://arxiv.org/abs/1311.2637

[6] Bussemaker F., Kaplansky I., McKay B., Seidel J., Determinants of matrices of the conference type, Linear Algebra Appl., 1997, 261, 275-292 | Zbl 0878.15001

[7] Cameron P., Problem 104 (Peter Cameron’s Blog), 2011, accessed 26 September 2013

[8] Craigen R., The range of the determinant function on the set of n x n .0; 1)-matrices, J. Combin. Math. Combin. Comput. 1990, 8, 161-171 | Zbl 0735.05017

[9] Ehlich H., Determiantenabschätzungen für binäre Matrizen, Math. Z., 1964, 83, 123-132

[10] Fletcher R. J., Koukouvinos C., Seberry J., New skew-Hadamard matrices of order 4 · 59 and new D-optimal designs of order 2 · 59, Discrete Math., 2004, 286, 252-253 | Zbl 1054.62081

[11] Horadam K.J., de Launey W., Cocyclic development of designs, J. Algebraic Combin. 2 (3) (1993) 267-290; Erratum: J. Algebraic Combin. 1994, 3 (1), 129 | Zbl 0785.05019

[12] Horadam K.J., Hadamard Matrices and Their Applications, Princeton University Press, Princeton, NJ, 2007 | Zbl 1145.05014

[13] Ionin Y., Kharaghani H., Balanced generalized Weighing matrices and Conference matrices, in: C. Colbourn and J. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, 2nd ed., Taylor and Francis, Boca Raton, 2006

[14] Kharaghani H., Orrick W., D-optimal designs, in: C. Colbourn and J. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, 2nd ed., Taylor and Francis, Boca Raton, 2006

[15] Krapiperi A., Mitrouli M., Neubauer M.G., Seberry J., An eigenvalue approach evaluating minors for weighing matrices W(n, n - 1), Linear Algebra Appl., 2012, 436, 2054-2066[WoS] | Zbl 1236.15017

[16] MacLane S., Homology, Classics in Mathematics Springer-Verlang, Berlin, 1995, Reprint of the 1975 edition

[17] Orrick W., Solomon B., The Hadamard Maximal Determinant Problem (website), http://www.indiana.edu/~maxdet/, accessed 3 October 2013

[18] Szollosi F., Exotic complex Hadamard matrices and their equivalence, Cryptogr. Commun., 2010, 2, 187-198 | Zbl 1228.05097

[19] Wojtas W., On Hadamard’s inequallity for the determinants of order non-divisible by 4, Colloq. Math., 1964, 12, 73-83 | Zbl 0126.02604