Carathéodory solutions of Sturm-Liouville dynamic equation with a measure of noncompactness in Banach spaces
Ahmet Yantir ; Ireneusz Kubiaczyk ; Aneta Sikorska-Nowak
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

In this paper, we present the existence result for Carathéodory type solutions for the nonlinear Sturm- Liouville boundary value problem (SLBVP) in Banach spaces on an arbitrary time scale. For this purpose, we introduce an equivalent integral operator to the SLBVP by means of Green’s function on an appropriate set. By imposing the regularity conditions expressed in terms of Kuratowski measure of noncompactness, we prove the existence of the fixed points of the equivalent integral operator. Mönch’s fixed point theorem is used to prove the main result. Finally, we also remark that it is straightforward to guarantee the existence of Carathéodory solutions for the SLBVP if Kuratowski measure of noncompactness is replaced by any axiomatic measure of noncompactness.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:268685
@article{bwmeta1.element.doi-10_1515_math-2015-0002,
     author = {Ahmet Yantir and Ireneusz Kubiaczyk and Aneta Sikorska-Nowak},
     title = {Carath\'eodory solutions of Sturm-Liouville dynamic equation with a measure of noncompactness in Banach spaces},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {1314.34188},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0002}
}
Ahmet Yantir; Ireneusz Kubiaczyk; Aneta Sikorska-Nowak. Carathéodory solutions of Sturm-Liouville dynamic equation with a measure of noncompactness in Banach spaces. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0002/

[1] Agarval R.P, O’Regan D., Difference equations in abstract spaces, J. Aust. Math. Soc. (Series A), 1998, 64 , 277-284[Crossref]

[2] Agarwal R.P., Bohner M., Basic calculus on time scales and some of its applications, Result Math., 1999, 35, 3-22 | Zbl 0927.39003

[3] Agarwal R.P., Benchohra M., Seba D., On the applications of Measure of noncompactness to the existence of solutions for fractional difference equations, Results Math., 2009, 55, 221-230 | Zbl 1196.26009

[4] Ambrosetti A., Un teorema di esistenza por le equazioni differenziali negli spazi di Banach, Rend. Semin. Mat. Univ. Padova, 1967, 39, 349-361

[5] Asadollah A., Banaś J., Jallian Y., Existence of solutions for a class of nonlinear Volterrra singular integral equations, Comp. Math. Appl., 2011, 62, 1215-1227[Crossref] | Zbl 1228.45002

[6] Atici F.M., Guseinov G. Sh., On Green’s functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 2002, 141, 75-99 | Zbl 1007.34025

[7] Banaś J, Goebel K, Measures of Noncompactness in Banach spaces, Lect. Notes Pure and Appl. Math., 60, Dekker, New York and Basel, 1980 | Zbl 0441.47056

[8] Bohner M., Peterson A., Dynamic Equations on Time Scales, An Introduction with Applications, Birkauser, Boston, 2001 | Zbl 0978.39001

[9] Bohner M., Peterson A. (Eds.), Advances in Dynamic Equations on Time Scales, Birkauser, Boston, 2003 | Zbl 1025.34001

[10] T. Cardinal, P. Rubbioni, On the existence of mild solutions of semilinear evolution differential inclusions, J. Math. Anal. Appl., 2005, 308, 620-635 | Zbl 1083.34046

[11] Cichoń M., On solutions of differential equations in Banach spaces, Nonlinear Anal., 2005, 60, 651-667 | Zbl 1061.34043

[12] Cichoń M., Kubiaczyk I., Sikorska-Nowak A., Yantir A., Weak solutions for the dynamic Cauchy problem in Banach spaces, Nonlinear Anal., 2009, 71, 2936-2943 | Zbl 1198.34192

[13] Cichoń ´ M., A note on Peano’s theorem on time scales, Appl. Math. Lett., 2010, 23, 1310-1313[WoS][Crossref] | Zbl 1202.34160

[14] Cichoń M., Kubiaczyk I., Sikorska-Nowak A., Yantir A., Existence of solutions of the dynamic Cauchy problem in Banach spaces, Demonstratio Math., 2012, 45(3), 561-573 | Zbl 1272.34122

[15] Darbo G., Punti uniti in transformazioni a condominio non compatto, Rend. Semin. Math. Univ. Padova, 1955, 24, 84-92 | Zbl 0064.35704

[16] DeBlasi F.S., On a property of unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 1977, 21, 259-262 | Zbl 0365.46015

[17] Gonzalez C., Meloda A.J., Set-contractive mappings and difference equations in Banach spaces, Comput. Math. Appl., 2003, 45, 1235-1243[Crossref] | Zbl 1057.39001

[18] Gori C., Obukhovskii V., Ragni M., Rubbioni P., On some properties of semilinear functional differential inclusions in abstract spaces, J. Concr. and Appl. Math., 2006, 4(1), 183-214 | Zbl 1105.34052

[19] Guseinov G. Sh., Integration on time scales, J. Math. Anal. Appl., 2003, 285, 107-127 | Zbl 1039.26007

[20] Hilger S., Ein Maßkettenkalkül mit Anvendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universit Rat Würzburg, 1988 | Zbl 0695.34001

[21] Hilger S., Analysis on measure chains - a unified approach to continuous and discrete calculus, Results Math., 1990, 18, 18-56 | Zbl 0722.39001

[22] Kaymakcalan B., Lakshmikantham V., Sivasundaram S., Dynamical Systems on Measure Chains, Kluwer Akademic Publishers, Dordrecht, 1996 | Zbl 0869.34039

[23] Kubiaczyk I., Sikorska-Nowak A., Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals, Discuss. Math. Differ. Incl. Control Optim., 2009, 29, 113-126[Crossref] | Zbl 1198.34197

[24] Kuratowski K., Sur les espaces complets, Fund. Math., 1930, 15, 301-309

[25] Mönch H, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear.anal., 1980, 4, 985-999[Crossref] | Zbl 0462.34041

[26] O’Regan D., Measures of noncompactness, Darbo maps and differential equations in abstract spaces, Acta Math. Hungar., 1995, 69(3), 233-261[Crossref]

[27] Papageorgiou N. S., Existence of solutions for hyperbolic differential inclusions in Banach spaces, Arch. Math. (Brno), 1992, 28, 205-213 | Zbl 0781.34045

[28] Rodriguez J., Nonlinear discrete Sturm-Liouville problems, J. Math. Anal. Appl., 2005, 308(1), 380-391 | Zbl 1076.39016

[29] Sikorska-Nowak A., Dynamic equations (Δm)(t) = f(t;x (t)) on time scales, Demonstratio Math., 2011, 44(2), 317-333 | Zbl 1242.34159

[30] Su H., Liu L., Wang X., Sturm-Liouville BVP in Banach space, Adv. in Difference Equ., 2011, # 2011:65[WoS]

[31] Topal S. G., Yantir A., Cetin E., Existence of positive solutions of a Sturm-Liouville BVP on an unbounded time scale. J. Difference Equ. Appl., 2008, 14, 287-293[Crossref] | Zbl 1143.39008

[32] Xue X.,Nonlocal nonlinear differential equations with a measure of noncompactess in Banach spaces, Nonlinear Anal., 2009, 70, 2593-2601 | Zbl 1176.34071

[33] Yantir A., Kubiaczyk I., Sikorska-Nowak A., Nonlinear Sturm-Liouville dynamic equation with a measure of noncompactness in Banach spaces, Bull. Belg. Math. Soc. Simon Stevin, 2013, 20, 587-601 | Zbl 1297.34103