Renormalized volume and the evolution of APEs
Eric Bahuaud ; Rafe Mazzeo ; Eric Woolgar
Geometric Flows, Tome 1 (2015), / Harvested from The Polish Digital Mathematics Library

We study the evolution of the renormalized volume functional for even-dimensional asymptotically Poincaré-Einstein metrics (M, g) under normalized Ricci flow. In particular, we prove that [...] where S(g(t)) is the scalar curvature for the evolving metric g(t). This implies that if S +n(n − 1) ≥ 0 at t = 0, then RenV(Mn , g(t)) decreases monotonically. For odd-dimensional asymptotically Poincaré-Einstein metrics with vanishing obstruction tensor,we find that the conformal anomaly for these metrics is constant along the flow. We apply our results to the Hawking-Page phase transition in black hole thermodynamics.We compute renormalized volumes for the Einstein 4-metrics sharing the conformal infinity of an AdS-Schwarzschild black hole. We compare these to the free energies relative to thermal hyperbolic space, as originally computed by Hawking and Page using a different regularization technique, and find that they are equal.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276424
@article{bwmeta1.element.doi-10_1515_geofl-2015-0007,
     author = {Eric Bahuaud and Rafe Mazzeo and Eric Woolgar},
     title = {Renormalized volume and the evolution of APEs},
     journal = {Geometric Flows},
     volume = {1},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_geofl-2015-0007}
}
Eric Bahuaud; Rafe Mazzeo; Eric Woolgar. Renormalized volume and the evolution of APEs. Geometric Flows, Tome 1 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_geofl-2015-0007/

[1] P. Albin, Renormalizing curvature integrals on Poincaré-Einstein manifolds, Adv. Math. 221 (2009) 140–169. [WoS] | Zbl 1170.53017

[2] P. Albin, C. Aldana and F. Rochon, Ricci flow and the determinant of the Laplacian on non-compact surfaces, Comm. Par. Diff. Eq. 38 (2013) 711–749. | Zbl 1284.53060

[3] S. Alexakis and R. Mazzeo, Renormalized area and properly embedded minimal surfaces in hyperbolic 3-manifolds Comm. Math. Phys. 297 (2010) No. 3, pp. 621–651. [WoS] | Zbl 1193.53131

[4] M.T. Anderson, L2 curvature and volume renormalization of AHE metrics on 4-manifolds, Math. Res. Lett. 8 (2001) 171–188. [Crossref] | Zbl 0999.53034

[5] E. Bahuaud, Ricci flow of conformally compact metrics, Ann. Inst. H. Poincaré: Anal. Non-Lin. 28 (2011) 813–835. [Crossref] | Zbl 1235.53066

[6] T. Balehowsky and E. Woolgar, The Ricci flow of asymptotically hyperbolic mass and applications, J. Math. Phys. 53 (2012) 072501. [WoS] | Zbl 1279.83034

[7] S. Brendle and O. Chodosh, A volume comparison theorem for asymptotically hyperbolic manifolds, Comm. Math. Phys., 332 (2014) 839–846. [WoS] | Zbl 1306.53021

[8] M. Berger, Quelques formules de variation pour une structure riemannienne, Ann. Sci. ÉNS 4e série 3 (1970) 285–294. | Zbl 0204.54802

[9] S.-Y.A. Chang, H. Fang and C.R. Graham A note on renormalized volume functionals, preprint [arXiv:1211.6422]. [WoS]

[10] S.-Y.A. Chang, J. Qing and P. Yang, On the renormalized volumes for conformally compact Einstein manifolds, J. Math. Sci. 149 (2008) 1755–1769.

[11] S. de Haro, K. Skenderis, and S.N. Solodukhin, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Comm. Math. Phys. 217 (2001) 595–622. | Zbl 0984.83043

[12] K. Ecker and G. Huisken, Interior estimates for hypersurfaces moving by mean curvature, Invent. Math., 105 (1991) 547–569. | Zbl 0707.53008

[13] C. Fefferman and C.R. Graham, Conformal invariants, in Élie Cartan et les Mathématiques d’Aujourd’hui, Astérisque (numéro hors série, 1985) 95–116. | Zbl 0602.53007

[14] C. Fefferman and C.R. Graham, The ambient metric Princeton Annals of Mathematical Studies 178, Princeton, NJ (2012) | Zbl 1243.53004

[15] D.H. Friedan, Nonlinear Models in 2 + " Dimensions, PhD thesis, University of California, Berkeley, 1980 (unpublished); Phys. Rev. Lett. 45 (1980) 1057–1060; Ann. Phys. (NY) 163 (1985) 318–419. [Crossref]

[16] C.R. Graham, Volume and area renormalizations for conformally compact Einstein metrics in The Proceedings of the 19th Winter School "Geometry and Physics” (Srni, 1999). Rend. Circ. Mat. Palermo (2) Suppl. No. 63 (2000), 31–42.

[17] C.R. Graham and K. Hirachi, The ambient obstruction tensor and Q-curvature, in AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries, IRMA Lect Math Theor Phys 8 (European Mathematical Society Zürich, 2005) pp 59–71. | Zbl 1074.53027

[18] C.R. Graham and J. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (1991) 186–225. | Zbl 0765.53034

[19] C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys. B546 (1999) 52–64. | Zbl 0944.81046

[20] S.W. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Comm. Math. Phys. 87 (1983) 577–588.

[21] M. Headrick and T. Wiseman, Ricci flow and black holes, Class. Quantum Grav. 23 (2006) 6683–6708. | Zbl 1114.83007

[22] M. Henningson and K. Skenderis, The holographic Weyl anomaly, J.H.E.P. 9807 (1998) 023. | Zbl 0958.81083

[23] X. Hu, D. Ji, and Y. Shi, Volume comparison of conformally compact manifolds with scalar curvature R ≥ −n(n − 1). http://arxiv.org/abs/1309.5430. | Zbl 1338.53071

[24] J. Isenberg, R. Mazzeo, and N. Sesum, Ricci flow on asymptotically conical surfaces with nontrivial topology, J. Reine Angew. Math. (Crelle), 676 (2013) 227–248. [WoS] | Zbl 1267.53070

[25] K Krasnov and J-M Schlenker, On the renormalized volume of hyperbolic 3-manifolds, Commun Math Phys 279 (2008) 637– 668. [WoS] | Zbl 1155.53036

[26] J.M.Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor.Math. Phys. 2 (1998) 231–252. | Zbl 0914.53047

[27] T.A. Oliynyk and E. Woolgar, Asymptotically flat Ricci flows, Commun. Anal. Geom. 15 (2007) 535–568. [Crossref] | Zbl 1138.53057

[28] I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, in AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lectures in Mathematics and Theoretical Physics 8, pp 73–101, European Mathematical Society, Zürich (2005). | Zbl 1081.81085

[29] T. Prestidge, Dynamic and thermodynamic stability and negative modes in Schwarzschild-anti-de Sitter, Phys. Rev. D61 (2000) 084002.

[30] J. Qing, On the rigidity for conformally compact Einstein manifolds, Int. Math. Res. Not. 21 (2003) 1141–1153. [Crossref] | Zbl 1042.53031

[31] J. Qing, Y. Shi, and J. Wu, Normalized Ricci flows and conformally compact Einstein metrics, Calc. Var. Partial Differential Equations 46 (2013), no. 1-2, 183–211. [WoS] | Zbl 1259.53046

[32] K. Schleich, S. Surya, and D.M. Witt, Phase transitions for flat adS black holes, Phys Rev Lett 86 (2001) 5231–5234.

[33] W.X. Shi, Deforming the metric on complete Riemannian manifolds, J. Diff. Geom. 30 (1989) 223–301. | Zbl 0676.53044

[34] E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505–532. | Zbl 1057.81550