Anisotropic mean curvature on facets and relations with capillarity
Stefano Amato ; Giovanni Bellettini ; Lucia Tealdi
Geometric Flows, Tome 1 (2015), / Harvested from The Polish Digital Mathematics Library

Given an anisotropy ɸ on R3, we discuss the relations between the ɸ-calibrability of a facet F ⊂ ∂E of a solid crystal E, and the capillary problem on a capillary tube with base F. When F is parallel to a facet ̃︀ BFɸ of the unit ball of ɸ, ɸ-calibrability is equivalent to show the existence of a ɸ-subunitary vector field in F, with suitable normal trace on @F, and with constant divergence equal to the ɸ-mean curvature of F. Assuming E convex at F, ̃︀ BFɸ a disk, and F (strictly) ɸ-calibrable, such a vector field is obtained by solving the capillary problem on F in absence of gravity and with zero contact angle. We show some examples of facets for which it is possible, even without the strict ɸ-calibrability assumption, to build one of these vector fields. The construction provides, at least for convex facets of class C1,1, the solution of the total variation flow starting at 1F.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275884
@article{bwmeta1.element.doi-10_1515_geofl-2015-0005,
     author = {Stefano Amato and Giovanni Bellettini and Lucia Tealdi},
     title = {Anisotropic mean curvature on facets and relations with capillarity},
     journal = {Geometric Flows},
     volume = {1},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_geofl-2015-0005}
}
Stefano Amato; Giovanni Bellettini; Lucia Tealdi. Anisotropic mean curvature on facets and relations with capillarity. Geometric Flows, Tome 1 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_geofl-2015-0005/

[1] F. J. Almgren, Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems with Constraints, Mem. Amer. Math. Soc. 4, 1976. | Zbl 0327.49043

[2] F. J. Almgren, J. E. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies , J. Differential Geom. 42 (1995), 1-22. | Zbl 0867.58020

[3] F. J. Almgren, J. E. Taylor, and L. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim. 31 (1993), 387-437. [Crossref] | Zbl 0783.35002

[4] F. Alter, and V. Caselles, Uniqueness of the Cheeger set of a convex body, Nonlinear Anal. 70 (2009) 32-44.

[5] F. Alter, V. Caselles, and A. Chambolle, A characterization of convex calibrable sets in Rn, Math. Ann. 332 (2005), 329-366. | Zbl 1108.35073

[6] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Mathematical Monographs, Oxford Univ. Press, Oxford, 2000. | Zbl 0957.49001

[7] L. Ambrosio, M. Novaga, and E. Paolini. Some regularity results for minimal crystals. ESAIM Control Optim. Calc. Var. 8 (2002), 69-103. | Zbl 1066.49021

[8] F. Andreu, V. Caselles, J. I. Diaz, and J. M.Mazon, Some qualitative properties of the total variation flow, J. Funct. Anal., 188, (2002), 516-547. | Zbl 1042.35018

[9] F. Andreu-Vaillo, V. Caselles, and J. M. Mazon, Parabolic quasilinear equations minimizing linear growth functionals, Progr. Math., Birkäuser, Basel, 2004. | Zbl 1053.35002

[10] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann.Mat. Pura Appl. 135 (1983), 293-318. | Zbl 0572.46023

[11] G. Anzellotti, Traces of bounded vector fields and the divergence theorem, preprint Dipartimento di Matematica Univ. Trento, 1983.

[12] G. Bellettini, A numerical approach to a minimum problem with applications in image segmentations, Ann. Univ. Ferrara 36 (1990), 99-111. | Zbl 0760.49010

[13] G. Bellettini, An introduction to anisotropic and crystallinemean curvature flow, Hokkaido Univ. Tech. Rep. Ser. inMath. 145 (2010), 102-162.

[14] G. Bellettini, V. Caselles, A. Chambolle, and M. Novaga, The volume preserving crystalline mean curvature flow of convex sets in RN, J. Math. Pures Appliquée 92 (2009), 499-527. | Zbl 1178.53066

[15] G. Bellettini, V. Caselles, and M. Novaga, The total variation flow in Rn, J. Differential Equations 184 (2002), 475-525. | Zbl 1036.35099

[16] G. Bellettini, V. Caselles, and M. Novaga, Explicit solutions of the eigenvalue problem −div(Du/|Du|) = u, SIAM J. Math. Anal. 36 (2005), 1095-1129. | Zbl 1162.35379

[17] G. Bellettini, and L. Mugnai, Anisotropic geometric functionals and gradient flows, Banach Cent. Publ. 86 (2009), 21-43. [Crossref] | Zbl 1189.53063

[18] G. Bellettini, and M. Novaga, Approximation and comparison for non-smooth anisotropic motion by mean curvature in RN, Math. Mod. Meth. Appl. Sc. 10 (2000), 1-10. [Crossref] | Zbl 1016.53048

[19] G. Bellettini, M. Novaga, and G. Orlandi, Eventual regularity for the parabolic minimal surface equation, Discrete Contin. Dyn. Syst., to appear. | Zbl 1334.35093

[20] G. Bellettini, M. Novaga, and M. Paolini, Facet-breaking for three-dimensional crystals evolving by mean curvature, Interfaces Free Bound. 1 (1999), 39-55. | Zbl 0934.49023

[21] G. Bellettini, M. Novaga, and M. Paolini, Characterization of facet-breaking for nonsmooth mean curvature flow in the convex case, Interfaces Free Bound. 3 (2001), 415-446. | Zbl 0989.35127

[22] G. Bellettini, M. Novaga, and M. Paolini,Ona crystalline variational problem, part I: first variation and global L1-regularity, Arch. Ration. Mech. Anal. 157 (2001), 165-191. | Zbl 0976.58016

[23] G. Bellettini, M. Novaga, and M. Paolini, On a crystalline variational problem, part II: BV-regularity and structure of minimizers on facets, Arch. Ration. Mech. Anal. 157 (2001), 193-217. | Zbl 0976.58017

[24] G. Bellettini, and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, HokkaidoMath. J. 25 (1996), 537-566. | Zbl 0873.53011

[25] G. Bellettini, and M. Paolini, Numerical simulations of measurements of capillary contact angles, IMA J. Numer. Anal. 16 (1996), 165-178. [Crossref] | Zbl 0851.76010

[26] G. Bellettini, M. Paolini, and S. Venturini, Some results on surface measures in Calculus of Variations, Ann.Mat. Pura Appl. 170 (1996), 329-359. | Zbl 0890.49020

[27] G. Bellettini, M. Paolini, and C. Verdi, Ʈ-convergence of discrete approximations to interfaces with prescribed mean curvature, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1 (1990), 317-328. | Zbl 0721.49038

[28] G. Bellettini, M. Paolini, and C. Verdi, Numerical minimization of geometrical type problems related to calculus of variations, Calcolo 27 (1990), 251-278. [Crossref] | Zbl 0733.49039

[29] G. Bellettini, M. Paolini, and C. Verdi, Convex approximations of functionals with curvature, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2 (1991), 297-306. | Zbl 0754.65066

[30] G. Bellettini, M. Paolini, and C. Verdi, Front-tracking and variational methods to approximate interfaces with prescribed mean curvature, “Proc. Numerical Methods for Free Boundary Problems”, Jyväskylä, 1990, (P. Neittaanmäki, ed.), Birkhäuser (1991), 83-92. | Zbl 0754.65065

[31] G. Bellettini, M. Paolini, and C. Verdi, Numerical minimization of functionals with curvature by convex approximations, “Progress in partial differential equations: calculus of variations, applications”, Pitman Research Notes in Mathematics Series, (C. Bandle, J. Bemelmans, M. Chipot, M. Grüter, and J. Saint Jean Paulin, eds.), Longman Scientific & Technical Harlow 267 (1992), 124-138. | Zbl 0790.53005

[32] G. Bellettini, M. Paolini, and C. Verdi, Convergence of discrete approximations to sets of prescribed mean curvature, “Free boundary problems involving solids”, Pitman Research Notes in Mathematics Series, (J.M. Chadam, and H. Rasmussen, eds.), Longman Scientific & Technical Harlow, 281 (1993), 164-169.

[33] J. Berthier, and K. A. Brakke, The Physics of Microdroplets, Wiley, Hoboken (NJ), 2012. | Zbl 06054911

[34] H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland Mathematics Studies, Amsterdam-London: North-Holland Publishing Comp., 1973.

[35] A. Briani, A. Chambolle, M. Novaga, and G. Orlandi, On the gradient flow of a one-homogeneous functional, Confluentes Math. 3 (2011), 617-635. | Zbl 1238.49015

[36] V. Caselles, A. Chambolle, and M. Novaga, Uniqueness of the Cheeger set of a convex body, Pacific J. Math. 232 (2007), 77-90. | Zbl 1221.35171

[37] V. Caselles, A. Chambolle, S. Moll, and M. Novaga, A characterization of convex calibrable sets in Rn with respect to anisotropic norms, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), 803-832. | Zbl 1144.52002

[38] V. Caselles, A. Chambolle, and M. Novaga, Some remarks on uniqueness and regularity of Cheeger sets, Rend. Semin.Mat. Univ. Padova 123 (2010), 191-201. | Zbl 1198.49042

[39] V. Caselles, A. Chambolle, and M. Novaga, Regularity for solutions of the total variation denoising problem, Rev. Mat. Iberoamericana 27 (2011), 233-252. [Crossref] | Zbl 1228.94005

[40] V. Caselles, G. Facciolo, and E. Meinhardt, Anisotropic Cheeger sets and applications, SIAM J. Imaging Sci. 2 (2009), 1211- 1254. | Zbl 1193.49051

[41] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, “Problems in Analysis, A Symposium in Honor of Salomon Bochner” (R. C. Gunning, ed.), Princeton Univ. Press 625 (1970), 195-199.

[42] L. Esposito, N. Fusco, and C. Trombetti, A quantitative version of the isoperimetric inequality: the anisotropic case Ann. Scuola Norm. Sup. Pisa 5 (2005), 619-652. | Zbl 1170.52300

[43] H. Federer, Geometric Measure Theory, Springer – Verlag, Berlin, 1968.

[44] R. Finn, Equilibrium Capillary Surfaces, Springer – Verlag, New York, 1986. | Zbl 0583.35002

[45] B. S. Fischer, and R. Finn, Existence theorems and measurement of the capillary contact angle, Zeit. Anal. Anwend. 12 (1993), 405-423. | Zbl 0782.76015

[46] I. Fonseca, The Wulff theorem revisited, Proc. Roy. London Soc. 432 (1991), 125-145. | Zbl 0725.49017

[47] I. Fonseca and S Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh 119 (1991), 125-136. | Zbl 0752.49019

[48] M. H. Giga, Y. Giga, Evolving graphs by singular weighted curvature, Arch. Ration. Mach. Anal. 141 (1998), 117-198. | Zbl 0896.35069

[49] M. H. Giga, Y. Giga, Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mach. Anal. 159 (2001), 295-333. | Zbl 1004.35075

[50] Y. Giga, M. Paolini, and P. Rybka, On the motion by singular interfacial energy, Japan J. Indust. Appl. Math. 18 (2001), 231-248. [Crossref] | Zbl 0984.35090

[51] E. Giusti, Boundary value problems for non-parametric surfaces of prescribedmean curvature, Ann. Scuola Norm. Sup. Pisa 3 (1976), 501-548 | Zbl 0344.35036

[52] E. Giusti, On the equation of surfaces of prescribed mean curvature, Invent. Math. 46 (1978), 111-137. [Crossref] | Zbl 0381.35035

[53] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, Boston-Basel-Stuttgart, Birkhäuser, 1984. | Zbl 0545.49018

[54] M. T. Hussain, Cheeger sets for unit cube: analytical and numerical solutions for L1 and L2 norms,Master Degree’s Thesis, Massachusetts Institute of Technology, 2008.

[55] B. Kawohl and T. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math. 225 (2006), 103-118. | Zbl 1133.52002

[56] B. Kawohl and M. Novaga. The p-Laplace eigenvalue problem as p → 1 and Cheeger sets in a Finsler metric, J. Convex Anal. 15 (2008), 623-634. | Zbl 1186.35115

[57] D. Krejčiřík and A. Pratelli, The Cheeger constant of curved strips, Pacific J. Math. 254 (2011), 309-333. | Zbl 1247.28003

[58] G. P. Leonardi and A. Pratelli,Onthe Cheeger sets in strips and non-convex domains, preprint (2014), available for download at http://arxiv.org/abs/1409.1376.

[59] U. Massari and M. Miranda, Minimal Surfaces of Codimension One, North-Holland Math. Studies, North-Holland, Amsterdam, 1984.

[60] M. Miranda, Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani, Ann. Scuola Norm. Sup. Pisa 3 (1964), 515-542. | Zbl 0152.24402

[61] M. Miranda, Superfici minime illimitate, Ann. Scuola Norm. Sup. Pisa 4 (1977), 313-322. | Zbl 0352.49020

[62] S. Moll, The anisotropic total variation flow, Math. Ann. 332 (2005), 177–218. | Zbl 1109.35061

[63] M. Novaga and E. Paolini, Regularity results for boundaries in R2 with prescribed anisotropic curvature. Ann. Mat. Pura Appl. 184 (2005), 239-261. | Zbl 1158.49306

[64] M. Paolini, Capillary and calibrability of sets in crystalline mean curvature flow, Oberwolfach Reports 2 (2005), 560-562.

[65] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60 (1992), 259-268. [Crossref] | Zbl 0780.49028

[66] R. Schoen, L. Simon, and F. J. Almgren, Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. I, II, Acta Math. 139 (1977), 217–265. | Zbl 0386.49030

[67] I. Tamanini, Regularity results for almost minimal oriented hypersurfaces in RN , Quad. Dip. Mat. Univ. Salento 1 (1984), 1-92. | Zbl 1191.35007

[68] J. E. Taylor, Existence and structure of solutions to a class of nonelliptic variational problems, Symposia Mathematica 14 (1974), 499-508.

[69] J. E. Taylor, Unique structure of solutions to a class of nonelliptic variational problems, Proc. Symp. Pure Math. 27 (1975), 419-427. [Crossref]

[70] J. E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), 568-588. [Crossref] | Zbl 0392.49022

[71] J. E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points, Proc. Symp. Pure Math. 54 (1993), 417-438. [Crossref] | Zbl 0823.49028