We study the gradient flow of the L2−norm of the second fundamental form for smooth immersions of two-dimensional surfaces into compact Riemannian manifolds. By analogy with the results obtained in [10] and [11] for the Willmore flow, we prove lifespan estimates in terms of the L2−concentration of the second fundamental form of the initial data and we show the existence of blowup limits. Under special condition both on the initial data and on the target manifold, we prove a long time existence result for the flow and the subconvergence to a critical immersion.
@article{bwmeta1.element.doi-10_1515_geofl-2015-0001, author = {Annibale Magni}, title = { A convergence result for the Gradient Flow of $\int$ |A| 2 in Riemannian Manifolds }, journal = {Geometric Flows}, volume = {1}, year = {2015}, zbl = {1315.49022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_geofl-2015-0001} }
Annibale Magni. A convergence result for the Gradient Flow of ∫ |A| 2 in Riemannian Manifolds . Geometric Flows, Tome 1 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_geofl-2015-0001/
[1] P. Breuning. Immersions with bounded second fundamental form. J. Geom. Anal., doi 10.1007/s12220-014-9472-7 [Crossref][WoS] | Zbl 1318.53060
[2] R. Bryant. A duality theorem for Willmore surfaces. J. Diff. Geom., 20:23–53, 1984 | Zbl 0555.53002
[3] A. A. Cooper. A compactness theorem for the second fundamental form. arXiv:1006.5697
[4] A. Huber. On subharmonic functions and differential geometry in the large. Comm. Math. Helv., 32:13–72, 1957. [Crossref] | Zbl 0080.15001
[5] E. Kuwert and R. Schätzle. The Willmore flow with small initial energy. J. Diff. Geom., 57:409–441, 2001. | Zbl 1035.53092
[6] E. Kuwert and R. Schätzle. Gradient flow for the Willmore functional. Commun. Anal. Geom., 10(2):307–339, 2002. | Zbl 1029.53082
[7] E. Kuwert and R. Schätzle. Removability of point singularities of Willmore surfaces. Ann. ofMath. (2), 160(1):315–357, 2004. | Zbl 1078.53007
[8] E. Kuwert and R. Schätzle. Closed Surfaces with bounds on their Willmore energy. Annali Sc. Norm. Sup. Pisa. Cl. Sci. 11:605–634, 2012. | Zbl 1260.53027
[9] E. Kuwert, A. Mondino and J. Schygulla. Existence of immersed spheres minimizing curvature functionals in compact 3- manifolds. Math. Ann., 359(1):379–425. [WoS] | Zbl 1295.53028
[10] F. Link Gradient flow for the Willmore functional in Riemannian manifolds with bounded geometry. PhD Thesis, Albert- Ludwigs-Universität Freiburg, arXiv:1308.6055.
[11] J. Metzger, G. Wheeler and V.M. Wheeler. Willmore flow of surfaces in Riemannian spaces I: Concentration-compactness. arXiv:1308.6024
[12] A. Mondino. Existence of Integral m−Varifolds minimizing |A|p and |H|p in Riemannian Manifolds. Calc. Var., 49(1-2):431– 470, 2014. [Crossref] | Zbl 1282.49041
[13] A. Mondino. Some results about the existence of critical points for theWillmore functional. Math. Z., 266(3):583–622, 2010. [WoS] | Zbl 1205.53046
[14] A. Mondino. The conformal Willmore Functional: a perturbative approach. J. Geom. Anal., 23(2):764-811, 2013. [WoS][Crossref] | Zbl 1276.53068
[15] A. Mondino and T. Riviére. Immersed spheres of finite total curvature into manifolds. Adv. Calc. Var., 7(4):493–538, 2014. [WoS] | Zbl 1306.53049
[16] A. Mondino and T. Riviére. Willmore Spheres in Compact Riemannian Manifolds. Adv. Math., 232(1):608–676, 2013. [WoS] | Zbl 1294.30046
[17] S. Müller and V. Šverák. On surfaces of finite total curvature. J. Diff. Geom., 42:229–258, 1995. | Zbl 0853.53003
[18] L. Simon. Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom., 1(2):281–325, 1993. | Zbl 0848.58012
[19] G. Simonett. The Willmore flow near spheres. Differential Integral Equations, 14(8):897–1024, 2001. | Zbl 1161.35429
[20] B. White. Complete surfaces of finite total curvature. J. Diff. Geom., 26:315–326, 1987. | Zbl 0631.53007