Leibniz Series forπ
Karol Pąk
Formalized Mathematics, Tome 24 (2016), p. 275-280 / Harvested from The Polish Digital Mathematics Library

In this article we prove the Leibniz series for π which states that π4=∑n=0∞(−1)n2⋅n+1. π4=n=0-1n2·n+1. The formalization follows K. Knopp [8], [1] and [6]. Leibniz’s Series for Pi is item 26 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:287991
@article{bwmeta1.element.doi-10_1515_forma-2016-0023,
     author = {Karol P\k ak},
     title = {Leibniz Series for$\pi$},
     journal = {Formalized Mathematics},
     volume = {24},
     year = {2016},
     pages = {275-280},
     zbl = {1357.40004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_forma-2016-0023}
}
Karol Pąk. Leibniz Series forπ. Formalized Mathematics, Tome 24 (2016) pp. 275-280. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_forma-2016-0023/