In this article we prove the Leibniz series for π which states that π4=∑n=0∞(−1)n2⋅n+1. The formalization follows K. Knopp [8], [1] and [6]. Leibniz’s Series for Pi is item 26 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.
@article{bwmeta1.element.doi-10_1515_forma-2016-0023, author = {Karol P\k ak}, title = {Leibniz Series for$\pi$}, journal = {Formalized Mathematics}, volume = {24}, year = {2016}, pages = {275-280}, zbl = {1357.40004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_forma-2016-0023} }
Karol Pąk. Leibniz Series forπ. Formalized Mathematics, Tome 24 (2016) pp. 275-280. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_forma-2016-0023/