Exponential Objects
Marco Riccardi
Formalized Mathematics, Tome 23 (2015), p. 351-369 / Harvested from The Polish Digital Mathematics Library

In the first part of this article we formalize the concepts of terminal and initial object, categorical product [4] and natural transformation within a free-object category [1]. In particular, we show that this definition of natural transformation is equivalent to the standard definition [13]. Then we introduce the exponential object using its universal property and we show the isomorphism between the exponential object of categories and the functor category [12].

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276848
@article{bwmeta1.element.doi-10_1515_forma-2015-0028,
     author = {Marco Riccardi},
     title = {Exponential Objects},
     journal = {Formalized Mathematics},
     volume = {23},
     year = {2015},
     pages = {351-369},
     zbl = {1334.18001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_forma-2015-0028}
}
Marco Riccardi. Exponential Objects. Formalized Mathematics, Tome 23 (2015) pp. 351-369. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_forma-2015-0028/

[1] Jiri Adamek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories: The Joy of Cats. Dover Publication, New York, 2009. | Zbl 0695.18001

[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.

[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.

[4] Francis Borceaux. Handbook of Categorical Algebra I. Basic Category Theory, volume 50 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1994.

[5] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1 (2):409–420, 1990.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.

[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.

[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.

[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.

[11] Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365–370, 1991.

[12] F. William Lawvere. Functorial semantics of algebraic theories and some algebraic problems in the context of functorial semantics of algebraic theories. Reprints in Theory and Applications of Categories, 5:1–121, 2004. | Zbl 1062.18004

[13] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer Verlag, New York, Heidelberg, Berlin, 1971. | Zbl 0232.18001

[14] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.

[15] Marco Riccardi. Object-free definition of categories. Formalized Mathematics, 21(3): 193–205, 2013. doi:10.2478/forma-2013-0021.[Crossref] | Zbl 1298.18001

[16] Marco Riccardi. Categorical pullbacks. Formalized Mathematics, 23(1):1–14, 2015. doi:10.2478/forma-2015-0001.[Crossref] | Zbl 1317.18006

[17] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.

[18] Andrzej Trybulec. Isomorphisms of categories. Formalized Mathematics, 2(5):629–634, 1991.

[19] Andrzej Trybulec. Natural transformations. Discrete categories. Formalized Mathematics, 2(4):467–474, 1991.

[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.

[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.