In this article we introduce the convergence of extended realvalued double sequences [16], [17]. It is similar to our previous articles [15], [10]. In addition, we also prove Fatou’s lemma and the monotone convergence theorem for double sequences.
@article{bwmeta1.element.doi-10_1515_forma-2015-0021, author = {Noboru Endou}, title = {Extended Real-Valued Double Sequence and Its Convergence}, journal = {Formalized Mathematics}, volume = {23}, year = {2015}, pages = {253-277}, zbl = {1321.40001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_forma-2015-0021} }
Noboru Endou. Extended Real-Valued Double Sequence and Its Convergence. Formalized Mathematics, Tome 23 (2015) pp. 253-277. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_forma-2015-0021/
[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[4] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[5] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Noboru Endou. Double series and sums. Formalized Mathematics, 22(1):57-68, 2014. doi:10.2478/forma-2014-0006.[Crossref] | Zbl 1298.40002
[11] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006. doi:10.2478/v10037-006-0008-x.[Crossref]
[12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
[13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
[14] Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. Formalized Mathematics, 16(2):167-175, 2008. doi:10.2478/v10037-008-0023-1.[Crossref] | Zbl 1321.46022
[15] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Double sequences and limits. Formalized Mathematics, 21(3):163-170, 2013. doi:10.2478/forma-2013-0018.[Crossref] | Zbl 1298.40003
[16] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2 edition, 1999. | Zbl 0924.28001
[17] D.J.H. Garling. A Course in Mathematical Analysis: Volume 1, Foundations and Elementary Real Analysis, volume 1. Cambridge University Press, 2013. | Zbl 1279.26003
[18] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.
[19] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1 (3):471-475, 1990.
[20] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[21] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.
[22] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[26] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007. doi:10.2478/v10037-007-0026-3. [Crossref]