Polish Notation
Taneli Huuskonen
Formalized Mathematics, Tome 23 (2015), p. 161-176 / Harvested from The Polish Digital Mathematics Library

This article is the first in a series formalizing some results in my joint work with Prof. Joanna Golinska-Pilarek ([12] and [13]) concerning a logic proposed by Prof. Andrzej Grzegorczyk ([14]). We present some mathematical folklore about representing formulas in “Polish notation”, that is, with operators of fixed arity prepended to their arguments. This notation, which was published by Jan Łukasiewicz in [15], eliminates the need for parentheses and is generally well suited for rigorous reasoning about syntactic properties of formulas.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276418
@article{bwmeta1.element.doi-10_1515_forma-2015-0014,
     author = {Taneli Huuskonen},
     title = {Polish Notation},
     journal = {Formalized Mathematics},
     volume = {23},
     year = {2015},
     pages = {161-176},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_forma-2015-0014}
}
Taneli Huuskonen. Polish Notation. Formalized Mathematics, Tome 23 (2015) pp. 161-176. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_forma-2015-0014/

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[5] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[6] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

[7] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.

[8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[9] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[10] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[12] Joanna Golinska-Pilarek and Taneli Huuskonen. Logic of descriptions. A new approach to the foundations of mathematics and science. Studies in Logic, Grammar and Rhetoric, 40(27), 2012. | Zbl 06585187

[13] Joanna Golinska-Pilarek and Taneli Huuskonen. Grzegorczyk’s non-Fregean logics. In Rafał Urbaniak and Gillman Payette, editors, Applications of Formal Philosophy: The Road Less Travelled, Logic, Reasoning and Argumentation. Springer, 2015. | Zbl 1086.03024

[14] Andrzej Grzegorczyk. Filozofia logiki i formalna logika niesymplifikacyjna. Zagadnienia Naukoznawstwa, XLVII(4), 2012. In Polish.

[15] Jan Łukasiewicz. Uwagi o aksjomacie Nicoda i ‘dedukcji uogólniajacej’. In Ksiega pamiatkowa Polskiego Towarzystwa Filozoficznego, Lwów, 1931. In Polish.

[16] Andrzej Nedzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.

[17] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.

[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.