Morley’s Trisector Theorem
Roland Coghetto
Formalized Mathematics, Tome 23 (2015), p. 75-79 / Harvested from The Polish Digital Mathematics Library

Morley’s trisector theorem states that “The points of intersection of the adjacent trisectors of the angles of any triangle are the vertices of an equilateral triangle” [10]. There are many proofs of Morley’s trisector theorem [12, 16, 9, 13, 8, 20, 3, 18]. We follow the proof given by A. Letac in [15].

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271793
@article{bwmeta1.element.doi-10_1515_forma-2015-0007,
     author = {Roland Coghetto},
     title = {Morley's Trisector Theorem},
     journal = {Formalized Mathematics},
     volume = {23},
     year = {2015},
     pages = {75-79},
     zbl = {1318.51007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_forma-2015-0007}
}
Roland Coghetto. Morley’s Trisector Theorem. Formalized Mathematics, Tome 23 (2015) pp. 75-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_forma-2015-0007/

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[3] Alexander Bogomolny. Morley’s miracle from interactive mathematics miscellany and puzzles. Cut the Knot, 2015.

[4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.

[5] Czesław Bylinski. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.

[6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[7] Roland Coghetto. Some facts about trigonometry and Euclidean geometry. Formalized Mathematics, 22(4):313-319, 2014. doi:10.2478/forma-2014-0031. | Zbl 1316.51006

[8] Alain Connes. A new proof of Morley’s theorem. Publications Math´ematiques de l’IH ´ES, 88:43-46, 1998.

[9] John Conway. On Morley’s trisector theorem. The Mathematical Intelligencer, 36(3):3, 2014. ISSN 0343-6993. doi:10.1007/s00283-014-9463-3. | Zbl 1308.51017

[10] H.S.M. Coxeter and S.L. Greitzer. Geometry Revisited. The Mathematical Association of America (Inc.), 1967. | Zbl 0166.16402

[11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

[12] Cesare Donolato. A vector-based proof of Morley’s trisector theorem. In Forum Geometricorum, volume 13, pages 233-235, 2013. | Zbl 1282.51007

[13] O.A.S. Karamzadeh. Is John Conway’s proof of Morley’s theorem the simplest and free of A Deus Ex Machina ? The Mathematical Intelligencer, 36(3):4-7, 2014. ISSN 0343-6993. doi:10.1007/s00283-014-9481-1. | Zbl 1309.51008

[14] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidean topological space. Formalized Mathematics, 11(3):281-287, 2003.

[15] A. Letac. Solutions (Morley’s triangle). Problem N 490. Sphinx: revue mensuelle des questions r´ecr´eatives, 9, 1939.

[16] Eli Maor and Eugen Jost. Beautiful geometry. Princeton University Press, 2014. | Zbl 1323.51001

[17] Robert Milewski. Trigonometric form of complex numbers. Formalized Mathematics, 9 (3):455-460, 2001.

[18] Cletus O. Oakley and Justine C. Baker. The Morley trisector theorem. American Mathematical Monthly, pages 737-745, 1978. | Zbl 0406.01008

[19] Marco Riccardi. Heron’s formula and Ptolemy’s theorem. Formalized Mathematics, 16 (2):97-101, 2008. doi:10.2478/v10037-008-0014-2.

[20] Brian Stonebridge. A simple geometric proof of Morley’s trisector theorem. Applied Probability Trust, 2009.

[21] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

[24] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.