Morley’s trisector theorem states that “The points of intersection of the adjacent trisectors of the angles of any triangle are the vertices of an equilateral triangle” [10]. There are many proofs of Morley’s trisector theorem [12, 16, 9, 13, 8, 20, 3, 18]. We follow the proof given by A. Letac in [15].
@article{bwmeta1.element.doi-10_1515_forma-2015-0007, author = {Roland Coghetto}, title = {Morley's Trisector Theorem}, journal = {Formalized Mathematics}, volume = {23}, year = {2015}, pages = {75-79}, zbl = {1318.51007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_forma-2015-0007} }
Roland Coghetto. Morley’s Trisector Theorem. Formalized Mathematics, Tome 23 (2015) pp. 75-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_forma-2015-0007/
[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Alexander Bogomolny. Morley’s miracle from interactive mathematics miscellany and puzzles. Cut the Knot, 2015.
[4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[5] Czesław Bylinski. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.
[6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Roland Coghetto. Some facts about trigonometry and Euclidean geometry. Formalized Mathematics, 22(4):313-319, 2014. doi:10.2478/forma-2014-0031. | Zbl 1316.51006
[8] Alain Connes. A new proof of Morley’s theorem. Publications Math´ematiques de l’IH ´ES, 88:43-46, 1998.
[9] John Conway. On Morley’s trisector theorem. The Mathematical Intelligencer, 36(3):3, 2014. ISSN 0343-6993. doi:10.1007/s00283-014-9463-3. | Zbl 1308.51017
[10] H.S.M. Coxeter and S.L. Greitzer. Geometry Revisited. The Mathematical Association of America (Inc.), 1967. | Zbl 0166.16402
[11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[12] Cesare Donolato. A vector-based proof of Morley’s trisector theorem. In Forum Geometricorum, volume 13, pages 233-235, 2013. | Zbl 1282.51007
[13] O.A.S. Karamzadeh. Is John Conway’s proof of Morley’s theorem the simplest and free of A Deus Ex Machina ? The Mathematical Intelligencer, 36(3):4-7, 2014. ISSN 0343-6993. doi:10.1007/s00283-014-9481-1. | Zbl 1309.51008
[14] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidean topological space. Formalized Mathematics, 11(3):281-287, 2003.
[15] A. Letac. Solutions (Morley’s triangle). Problem N 490. Sphinx: revue mensuelle des questions r´ecr´eatives, 9, 1939.
[16] Eli Maor and Eugen Jost. Beautiful geometry. Princeton University Press, 2014. | Zbl 1323.51001
[17] Robert Milewski. Trigonometric form of complex numbers. Formalized Mathematics, 9 (3):455-460, 2001.
[18] Cletus O. Oakley and Justine C. Baker. The Morley trisector theorem. American Mathematical Monthly, pages 737-745, 1978. | Zbl 0406.01008
[19] Marco Riccardi. Heron’s formula and Ptolemy’s theorem. Formalized Mathematics, 16 (2):97-101, 2008. doi:10.2478/v10037-008-0014-2.
[20] Brian Stonebridge. A simple geometric proof of Morley’s trisector theorem. Applied Probability Trust, 2009.
[21] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[24] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.