Bivariate copulas, norms and non-exchangeability
Pier Luigi Papini
Dependence Modeling, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

The present paper is related to the study of asymmetry for copulas by introducing functionals based on different norms for continuous variables. In particular, we discuss some facts concerning asymmetry and we point out some flaws occurring in the recent literature dealing with this matter.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275866
@article{bwmeta1.element.doi-10_1515_demo-2015-0014,
     author = {Pier Luigi Papini},
     title = {Bivariate copulas, norms and non-exchangeability},
     journal = {Dependence Modeling},
     volume = {3},
     year = {2015},
     zbl = {06534022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0014}
}
Pier Luigi Papini. Bivariate copulas, norms and non-exchangeability. Dependence Modeling, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0014/

[1] E. Alvoni and P.L. Papini (2007). Quasi-concave copulas, asymmetry and transformations. Comment. Math. Univ. Carolin. 48(2), 311-319. | Zbl 1195.62074

[2] E. Alvoni, F. Durante, P. L. Papini and C. Sempi (2007). Different types of convexity and concavity for copulas. In M. Stepnicka, V. Nowak and U. Bodenhofer (ed.s), Proc. 5th EUSFLAT Conf. Volume 1, Univ. Ostravensis, 185-189.

[3] G. Beliakov, B.De Baets, H. De Meyer, R.B. Nelsen and M. Úbeda-Flores (2014). Best possible bounds on the set of copulas with given degree of non-exchangeability. J. Math. Anal. Appl. 417(1), 451-468. [WoS] | Zbl 1308.62108

[4] F. W. Darsow and E. T. Olsen (1995). Norms for copulas. Internat. J. Math. Math. Sci. 18(3), 417-436. [Crossref] | Zbl 0827.46011

[5] F. Durante, E. P. Klement, C. Sempi and M. Úbeda-Flores (2010). Measures of non-exchangeability for bivariate random vectors. Statist. Papers 51(3), 687-699. [Crossref] | Zbl 1247.60047

[6] F. Durante and P.L. Papini (2010). Non-exchangeability of negatively dependent random variables. Metrika 71(2), 139-149. [Crossref][WoS] | Zbl 1182.62119

[7] F. Durante and C. Sempi (2015). Principles of Copula Theory. Chapman & Hall/CRC, Boca Raton FL. | Zbl 06445037

[8] S. Fuchs and K.D. Schmidt (2014). Bivariate copulas: transformations, asymmetry and measures of concordance. Kybernetika 50(1), 109-125. | Zbl 06296994

[9] C. Genest and J.G. Nešlehová (2013). Assessing and Modeling Asymmetry in Bivariate Continuous Data. In P. Jaworski, F. Durante and W.K. Härdle (ed.s), Copulae in Mathematical and Quantitative Finance, Springer Berlin. | Zbl 1273.62112

[10] E. P. Klement and R. Mesiar (2006). How non-symmetric can a copula be? Comment. Math. Univ. Carolin. 47(1), 141-148. | Zbl 1150.62027

[11] R. B. Nelsen (2006). An introduction to Copulas. Second Edition. Springer, New York. | Zbl 1152.62030

[12] R.B. Nelsen (2007). Extremes of nonexchangeability. Statist. Papers 48(2), 329-336. [Crossref] | Zbl 1110.62071

[13] K. F. Siburg and P. A. Stoimenov (2008). A scalar product for copulas. J. Math. Anal. Appl. 344(1), 429-439. | Zbl 1151.46023

[14] K. F. Siburg and P.A. Stoimenov (2011). Symmetry of functions and exchangeability of random variables. Statist. Papers 52(1), 1-15. [Crossref] | Zbl 1247.60021