For the Markov property of a multivariate process, a necessary and suficient condition on the multidimensional copula of the finite-dimensional distributions is given. This establishes that the Markov property is solely a property of the copula, i.e., of the dependence structure. This extends results by Darsow et al. [11] from dimension one to the multivariate case. In addition to the one-dimensional case also the spatial copula between the different dimensions has to be taken into account. Examples are also given.
@article{bwmeta1.element.doi-10_1515_demo-2015-0011, author = {Ludger Overbeck and Wolfgang M. Schmidt}, title = {Multivariate Markov Families of Copulas}, journal = {Dependence Modeling}, volume = {3}, year = {2015}, zbl = {1335.60134}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0011} }
Ludger Overbeck; Wolfgang M. Schmidt. Multivariate Markov Families of Copulas. Dependence Modeling, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0011/
[1] Abegaz, F. and Naik-Nimbalkar, U. (2008). Modeling statistical dependence of Markov chains via copula models. J. Statist. Plann. Inference, 138(4), 1131–1146. | Zbl 1130.62087
[2] Beare, B.K. (2010). Copulas and temporal dependence. Econometrica, 78(1), 395–410. [WoS][Crossref] | Zbl 1202.91271
[3] Beare, B.K. and Seo, J. (2015) Vine copula specification for stationary multivariate Markov chains. J. Time Series Anal., 36, 228–246. | Zbl 1320.62224
[4] Bielecki, T. R., Crépey, S., Jeanblanc, M., and Zargari, B. (2012). Valuation and hedging of CDS counterparty exposure in a Markov copula model. Int. J. Theor. Appl. Finance, 15(01). [Crossref] | Zbl 1243.91100
[5] Bielecki, T. R., Jakubowski, J., Vidozzi, A., and Vidozzi, L. (2008). Study of dependence for some stochastic processes. Stoch. Anal. Appl., 26(4), 903–924. [Crossref] | Zbl 1157.60312
[6] Brechmann, E.C., Czado, C., and Aas, K. (2012) Truncated regular vines in high dimensions with application to financial data. Canad. J. Statist., 40 (1), 68-85. | Zbl 1274.62381
[7] Chen, X. and Fan, Y. (2006) Estimation of copula-based semiparametric time series models. J. Econometrics, 130, 307–335. | Zbl 1337.62201
[8] Chen, X. , Wu, W.B., and Yi, Y. (2009) Efficient estimation of copula-based semiparametric Markov models. Ann. Statist., 37 (6B), 4214-4253. [Crossref] | Zbl 1191.62140
[9] Cherubini, U., Mulinacci, S., Gobbi, F., and Romagnoli, S. (2011a). Dynamic Copula Methods in Finance. Wiley. | Zbl 1274.60226
[10] Cherubini, U., Mulinacci, S., and Romagnoli, S. (2011b). A copula-based model of speculative price dynamics in discrete time. J. Multivariate Anal., 102(6), 1047–1063. [WoS][Crossref] | Zbl 1274.60226
[11] Darsow, W., Nguyen, B., and Olsen, E. (1992). Copulas and Markov processes. Illinois J. Math, 36(4), 600–642. | Zbl 0770.60019
[12] Haff, I.H. (2012) Estimating the parameters of a pair copula construction. Bernoulli, 19(2), 462–491. [Crossref] | Zbl 06168760
[13] Ibragimov, R. (2009). Copula-based characterizations for higher order Markov processes. Econometric Theory, 25(03), 819–846. [WoS][Crossref] | Zbl 1277.60123
[14] Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall/CRC. | Zbl 0990.62517
[15] McNeil, A.J., Frey, R., and Embrechts, P. (2010). Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press. | Zbl 1337.91003
[16] Nelsen, R. (1999). An Introduction to Copulas. Springer Verlag, New York. | Zbl 0909.62052
[17] Rémillard, B., Papageorgiou, N., and Soustra, F. (2012) Copula-based semiparametric models for multivariate time series. J. Multivariate Anal., 110, 30–42. [WoS] | Zbl 1281.62136
[18] Simard, C. and Rémillard, B. (2015) Forecasting time series with multivariate copulas. Depend. Model., 3, 59–82. | Zbl 1328.62546
[19] Stöber, J. and Czado, C. (2014) Regime switches in the dependence structure of multidimensional financial data. Comput. Stat. Data An., 76, 672–686. [WoS]
[20] Yi,W. and Liao, S.S. (2010) Statistical properties of parametric estimators forMarkov chain vectors based on copula models. J. Statist. Plann. Inference, 140, 1465–1480. | Zbl 1185.62151