High level quantile approximations of sums of risks
A. Cuberos ; E. Masiello ; V. Maume-Deschamps
Dependence Modeling, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

The approximation of a high level quantile or of the expectation over a high quantile (Value at Risk (VaR) or Tail Value at Risk (TVaR) in risk management) is crucial for the insurance industry.We propose a new method to estimate high level quantiles of sums of risks. It is based on the estimation of the ratio between the VaR (or TVaR) of the sum and the VaR (or TVaR) of the maximum of the risks. We show that using the distribution of the maximum to approximate the VaR is much better than using the marginal. Our method seems to work well in high dimension (100 and higher) and gives good results when approximating the VaR or TVaR in high levels on strongly dependent risks where at least one of the risks is heavy tailed.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275860
@article{bwmeta1.element.doi-10_1515_demo-2015-0010,
     author = {A. Cuberos and E. Masiello and V. Maume-Deschamps},
     title = {High level quantile approximations of sums of risks},
     journal = {Dependence Modeling},
     volume = {3},
     year = {2015},
     zbl = {1329.62302},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0010}
}
A. Cuberos; E. Masiello; V. Maume-Deschamps. High level quantile approximations of sums of risks. Dependence Modeling, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0010/

[1] Albrecher, H., Constantinescu, C., and Loisel, S. (2011). Explicit ruin formulas for models with dependence among risks. Insurance Math. Econom., 48, 65–270. | Zbl 1218.91065

[2] Alink, S., Löwe, M., and Wüthrich, M.V. (2004). Diversification of aggregate dependent risks. Insurance Math. Econom., 35(1), 77–95. | Zbl 1052.62105

[3] Alink, S., Löwe, M., and Wüthrich M.V. (2005). Analysis of the expected shortfall of aggregate dependent risks. ASTIN Bull., 35(1), 25–43. [Crossref] | Zbl 1101.62092

[4] Alink, S., Löwe, M., and Wüthrich M.V. (2007). Diversification for general copula dependence. Stat. Neerl., 61(4), 446–465. [WoS][Crossref] | Zbl 1149.62042

[5] Arbenz, P., Embrechts, P., and Puccetti, G. (2011). The aep algorithm for the fast computation of the distribution of the sum of dependent random variables. Bernoulli, 17(2), 562–591. [Crossref][WoS] | Zbl 1248.60018

[6] Barbe, P., Fougères, A.-L., and Genest, C. (2006). On the Tail Behavior of Sums of Dependent Risks. ASTIN Bull., 36(2), 361– 373. [Crossref] | Zbl 1162.91395

[7] Barbe, P., and McCormick, W.P. (2005). Asymptotic expansions of convolutions of regularly varying distributions. J. Aust. Math. Soc., 78(3), 339–371. [Crossref] | Zbl 1071.62016

[8] Bernard, C., Rüschendorf, L., and Vanduffel, S. (2015). Value-at-Risk boundswith variance constraints. J. Risk Insur. Available at http://dx.doi.org/10.2139/ssrn.2342068. [Crossref]

[9] Bernard, C. and Vanduffel, S. (2015). A new approach to assessing model risk in high dimensions. J. Bank. Finance, 58, 166–178. [WoS]

[10] Bingham, N.H., Goldie, C.H., and Teugels, J.H. (1989). Regular Variation. Cambridge university press. | Zbl 0667.26003

[11] Cénac, P., Loisel, S.,Maume-Deschamps, V., and Prieur, C. (2014). Risk indicatorswith several lines of business: comparison, asymptotic behavior and applications to optimal reserve allocation. Ann. I.S.U.P., 58(3).

[12] Cossette, H., Côté, M.-P., Mailhot, M., and Marceau, E. (2014). A note on the computation of sharp numerical bounds for the distribution of the sum, product or ratio of dependent risks. J. Multivariate Anal., 130, 1–20. [WoS] | Zbl 1292.62077

[13] Dacorogna, M., El Bahtouri, L., and Kratz, M. (2015). Explicit diversification benefit for dependent risks. Preprint.

[14] Dubey, S.D. (1970). Compound gamma, beta and F distributions. Metrika, 16(1), 27–31. [Crossref] | Zbl 0195.48903

[15] Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance, 33. Springer. | Zbl 0873.62116

[16] Embrechts, P., Neslehová, J., and Wüthrich, M.V. (2009). Additivity properties for value-at-risk under archimedean dependence and heavy-tailedness. Insurance Math. Econom., 44(2), 164–169. | Zbl 1163.91431

[17] Embrechts, P., Puccetti, G., and Rüschendorf, L. (2013). Model uncertainty and VaR aggregation. J. Bank. Finance, 37(8), 2750–2764. [WoS][Crossref]

[18] Fougères, A.-L., and Mercadier, C. (2012). Riskmeasures andmultivariate extensions of Breiman’s theorem. J. Appl. Probab., 49:364–384. [Crossref] | Zbl 1246.91060

[19] Geluk, J. and Tang, Q. (2009). Asymptotic tail probabilities of sums of dependent subexponential random variables. J. Theoret. Probab., 22(4):871–882. | Zbl 1177.62017

[20] Kortschak, D., and Albrecher, H. (2009). Asymptotic results for the sum of dependent non-identically distributed random variables. Methodol. Comput. Appl. Probab., 11(3), 279–306. [Crossref][WoS] | Zbl 1171.60348

[21] Maume-Deschamps, V., Rullière, D., and Saïd, K. (2015). Impact of dependence on some multivariate risk indicators. Available at https://hal.archives-ouvertes.fr/hal-01171395/document.

[22] Nguyen, Q.-H., and Robert, C.Y. (2014). New eficient estimators in rare event simulation with heavy tails. J. Comput. Appl. Math., 261, 39–47. [WoS] | Zbl 06243397

[23] Oakes, D. (1989). Bivariate survival models induced by frailties. J. Amer. Statist. Assoc., 84(406), 487–493. [Crossref] | Zbl 0677.62094

[24] Resnick, S.I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer-Verlag New York. | Zbl 1152.62029

[25] Weinzierl, W. (2000). Introduction to Monte Carlo Methods. ArXiv preprint hep-ph/0006269.

[26] Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest observations. J. Amer. Statist. Assoc., 73(364):812–815. | Zbl 0397.62034

[27] Yeh, H-C. (2007). The frailty and the Archimedean structure of the general multivariate Pareto distributions. Bull. Inst.Math. Acad. Sin., 2(3), 713–729. | Zbl 1132.62037