Seven Proofs for the Subadditivity of Expected Shortfall
Paul Embrechts ; Ruodu Wang
Dependence Modeling, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

Subadditivity is the key property which distinguishes the popular risk measures Value-at-Risk and Expected Shortfall (ES). In this paper we offer seven proofs of the subadditivity of ES, some found in the literature and some not. One of the main objectives of this paper is to provide a general guideline for instructors to teach the subadditivity of ES in a course. We discuss the merits and suggest appropriate contexts for each proof.With different proofs, different important properties of ES are revealed, such as its dual representation, optimization properties, continuity, consistency with convex order, and natural estimators.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275999
@article{bwmeta1.element.doi-10_1515_demo-2015-0009,
     author = {Paul Embrechts and Ruodu Wang},
     title = {Seven Proofs for the Subadditivity of Expected Shortfall},
     journal = {Dependence Modeling},
     volume = {3},
     year = {2015},
     zbl = {1331.91203},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0009}
}
Paul Embrechts; Ruodu Wang. Seven Proofs for the Subadditivity of Expected Shortfall. Dependence Modeling, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0009/

[1] Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective risk aversion. J. Bank. Finance, 26(7), 1505–1518.

[2] Acerbi, C. and Tasche, D. (2002). On the coherence of expected shortfall. J. Bank. Finance, 26(7), 1487–1503.

[3] Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of risk. Math. Finance, 9(3), 203–228. [Crossref] | Zbl 0980.91042

[4] BCBS (2012). Consultative Document May 2012. Fundamental review of the trading book. Basel Committee on Banking Supervision. Basel: Bank for International Settlements.

[5] BCBS (2013). Consultative Document October 2013. Fundamental reviewof the trading book: A revisedmarket risk framework. Basel Committee on Banking Supervision. Basel: Bank for International Settlements.

[6] BCBS (2014). Consultative Document December 2014. Fundamental review of the trading book: Outstanding issues. Basel Committee on Banking Supervision. Basel: Bank for International Settlements.

[7] Billingsley, P. (1995). Probability and Measure. Third Edition. Wiley. | Zbl 0822.60002

[8] Choquet, G. (1953). Theory of capacities. Ann. Inst. Fourier, 5, 121–293.

[9] Cont, R., Deguest, R. and Scandolo, G. (2010). Robustness and sensitivity analysis of risk measurement procedures. Quant. Finance, 10(6), 593–606. [WoS][Crossref] | Zbl 1192.91191

[10] Delbaen, F. (2012). Monetary Utility Functions. Osaka University Press.

[11] Denneberg, D. (1994). Non-additive Measure and Integral. Springer. | Zbl 0826.28002

[12] Denuit, M., Dhaene, J., Goovaerts, M.J. and Kaas, R. (2005). Actuarial Theory for Dependent Risks. Wiley. | Zbl 1086.91035

[13] Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R. and Vynche, D. (2002). The concept of comonotonicity in actuarial science and finance: Theory. Insur. Math. Econ. 31(1), 3-33. [Crossref] | Zbl 1051.62107

[14] Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., Tang, Q. and Vynche, D. (2006). Risk measures and comonotonicity: a review. Stoch. Models, 22, 573–606. | Zbl 1159.91403

[15] Dhaene, J., Laeven, R. J., Vanduffel, S., Darkiewicz, G. and Goovaerts, M. J. (2008). Can a coherent risk measure be too subadditive? J. Risk Insur., 75(2), 365–386. [WoS]

[16] Embrechts, P. and Hofert, M. (2013). A note on generalized inverses. Math. Methods Oper. Res., 77(3), 423–432. | Zbl 1281.60014

[17] Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R. and Beleraj, A. (2014). An academic response to Basel 3.5. Risks, 2(1), 25-48.

[18] Föllmer, H. and Schied, A. (2011). Stochastic Finance: An Introduction in Discrete Time. Walter de Gruyter, Third Edition. | Zbl 1126.91028

[19] Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon. Sect. A., 14, 53–77. | Zbl 0045.22905

[20] Goovaerts, M. J., Kaas, R., Dhaene, J. and Tang, Q. (2004). Some new classes of consistent risk measures. Insur.Math. Econ., 34(3), 505–516. [Crossref] | Zbl 1188.91087

[21] Hoeffding, W. (1940). Massstabinvariante Korrelationstheorie. Schriften Math. Inst. Univ. Berlin, 5(5), 181–233.

[22] Huber, P. J. (1980). Robust Statistics. First ed., Wiley Series in Probability and Statistics. Wiley, New Jersey.

[23] Huber, P. J. and Ronchetti E. M. (2009). Robust Statistics. Second ed., Wiley Series in Probability and Statistics. Wiley, New Jersey. First ed.: Huber, P. (1980). | Zbl 1276.62022

[24] IAIS (2014). Consultation Document December 2014. Risk-based global insurance capital standard. International Association of Insurance Supervisors.

[25] Kaas, R., Goovaerts, M., Dhaene, J. and Denuit, M. (2008). Modern Actuarial Risk Theory: Using R. Springer. | Zbl 1148.91027

[26] Kusuoka, S. (2001). On law invariant coherent risk measures. Adv. Math. Econ., 3, 83–95. [Crossref] | Zbl 1010.60030

[27] Levy, H. and Kroll, Y. (1978). Ordering uncertain options with borrowing and lending. J. Finance, 33(2), 553-574. [Crossref]

[28] McNeil, A. J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques, Tools. Princeton University Press. | Zbl 1089.91037

[29] McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques and Tools. Revised Edition. Princeton University Press. | Zbl 1337.91003

[30] Meilijson, I. and A. Nádas (1979). Convexmajorization with an application to the length of critical paths. J. Appl. Prob. 16(3), 671–677. [Crossref] | Zbl 0417.60025

[31] Resnick, S.I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer. | Zbl 0633.60001

[32] Rockafellar, R. T. and Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. J. Bank. Finance, 26(7), 1443–1471.

[33] Rüschendorf, L. (2013).Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer. | Zbl 1266.91001

[34] Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer. | Zbl 0806.62009

[35] Van Zwet, W.R. (1980). A strong law for linear functions of order statistics. Ann. Probab., 8, 986–990. [Crossref] | Zbl 0448.60025

[36] Wang, S. and Dhaene, J. (1998). Comonotonicity, correlation order and premium principles. Insur. Math. Econ., 22(3), 235– 242. [Crossref] | Zbl 0909.62110

[37] Wang, S., Young, V. R. and Panjer, H. H. (1997). Axiomatic characterization of insurance prices. Insur. Math. Econ., 21(2), 173–183. [Crossref] | Zbl 0959.62099

[38] Wellner, J. A. (1977). A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics. Ann. Stat., 5(3), 473–480. [Crossref] | Zbl 0365.62045

[39] Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55(1), 95–115. [Crossref] | Zbl 0616.90005