We revisit Sklar’s Theorem and give another proof, primarily based on the use of right quantile functions. To this end we slightly generalise the distributional transform approach of Rüschendorf and facilitate some new results including a rigorous characterisation of an almost surely existing “left-invertibility” of distribution functions.
@article{bwmeta1.element.doi-10_1515_demo-2015-0008, author = {Frank Oertel}, title = {An analysis of the R\"uschendorf transform - with a view towards Sklar's Theorem}, journal = {Dependence Modeling}, volume = {3}, year = {2015}, zbl = {06534016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0008} }
Frank Oertel. An analysis of the Rüschendorf transform - with a view towards Sklar’s Theorem. Dependence Modeling, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0008/
[1] S. Ahmed, U. Çakmak and A. Shapiro. Coherent risk measures in inventory problems. European J. Oper. Res., 182 (1), 226-238 (2007). [WoS] | Zbl 1128.90002
[2] R. B. Ash and C. A. Doléans-Dade. Probability and Measure Theory - 2nd Edition. Academic Press (2000).
[3] P. Billingsley. Probability and Measure - 3rd Edition. John Wiley & Sons (1995). | Zbl 0822.60002
[4] F. Durante, J. Fernández-Sánchez and C. Sempi. A topological proof of Sklar’s theorem. Appl.Math. Lett. 26, 945-948 (2013). [WoS][Crossref] | Zbl 1314.62127
[5] P. Embrechts and M. Hofert. A note on generalized inverses. Math. Methods Oper. Res., 77 (3), 423-432 (2013). | Zbl 1281.60014
[6] H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete Time - 3rd Edition. De Gruyter Textbook (2011). | Zbl 1126.91028
[7] M. Fréchet. Sur les tableaux de corrélation dont les marges sont donnés. Ann. Univ. Lyon, Science 4, 13-84 (1951). | Zbl 0045.22905
[8] E. P. Klement, R. Mesiar and E. Pap. Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Set. Syst., 104(1), 3-13 (1999). | Zbl 0953.26008
[9] C. Feng, J. Kowalski, X. M. Tu and H. Wang. A Note on Generalized Inverses of Distribution Function and Quantile Transformation. Applied Mathematics, Scientific Research Publishing, 3 (12A), 2098-2100 (2012).
[10] J. F. Mai and M. Scherer. Simulating Copulas. Imperial College Press, London (2012). | Zbl 1301.65001
[11] D. S. Moore and M. C. Spruill. Unified large-sample theory of general Chi-squared statistics for tests of fit. Ann. Statist., 3, 599-616 (1975). | Zbl 0322.62047
[12] L. Rüschendorf. On the distributional transform, Sklar’s Theorem, and the empirical copula process. J. Statist. Plann. Inference 139(11), 3921-3927 (2009). | Zbl 1171.60313
[13] B. Schweizer and A. Sklar. Operations on distribution functions not derivable from operations on random variables. Studia Math. 52, 43-52 (1974). | Zbl 0292.60035
[14] B. Schweizer and A. Sklar. Probabilistic metric spaces. North-Holland, New York (1983). | Zbl 0546.60010
[15] A. Sklar. Fonctions de répartition à n dimensions et leursmarges. Publications de l’Institut Statistique de l’Université de Paris 8, 229-231 (1959). | Zbl 0100.14202