A conditional variance is an indicator of the level of independence between two random variables. We exploit this intuitive relationship and define a measure v which is almost a measure of mutual complete dependence. Unsurprisingly, the measure attains its minimum value for many pairs of non-independent ran- dom variables. Adjusting the measure so as to make it invariant under all Borel measurable injective trans- formations, we obtain a copula-based measure of dependence v* satisfying A. Rényi’s postulates. Finally, we observe that every nontrivial convex combination of v and v* is a measure of mutual complete dependence.
@article{bwmeta1.element.doi-10_1515_demo-2015-0007, author = {Noppadon Kamnitui and Tippawan Santiwipanont and Songkiat Sumetkijakan}, title = {Dependence Measuring from Conditional Variances}, journal = {Dependence Modeling}, volume = {3}, year = {2015}, zbl = {06534015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0007} }
Noppadon Kamnitui; Tippawan Santiwipanont; Songkiat Sumetkijakan. Dependence Measuring from Conditional Variances. Dependence Modeling, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0007/
[1] V.I. Bogachev, Measure Theory, vol I, Springer Verlag, 2007.
[2] N. Chaidee, T. Santiwipanont, S. Sumetkijakan, Patched approximations and their convergence, Comm. Statist. Theory Methods, in press, http://dx.doi.org/10.1080/03610926.2014.887112. [Crossref] | Zbl 06600068
[3] W.F. Darsow, B. Nguyen, E.T. Olsen, Copulas and Markov processes, Illinois J. Math. 36 (1992) 600–642. | Zbl 0770.60019
[4] W.F. Darsow, E.T. Olsen, Norms for copulas, Int. J. Math. Math. Sci. 18 (1995) 417–436. [Crossref] | Zbl 0827.46011
[5] W.F. Darsow, E.T. Olsen, Characterization of idempotent 2-copulas, Note Mat. 30 (2010) 147–177. | Zbl 1238.60042
[6] F. Durante, E.P. Klement, J.J. Quesada-Molina, P. Sarkoci, Remarks on two product-like constructions for copulas, Kyber- netika (Prague) 43 (2007) 235–244. | Zbl 1136.60306
[7] F. Durante, P. Sarkoci, C. Sempi, Shuffles of copulas, J. Math. Anal. Appl. 352 (2009) 914–921. | Zbl 1160.60307
[8] H. Gebelein, Das statistische Problem der Korrelation als Variations und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung, Z. Angew. Math. Mech. 21 (1941) 364–379. [Crossref] | Zbl 0026.33402
[9] N. Kamnitui, New Measure of Dependence from Conditional Variances, Master thesis, 2015. | Zbl 06534015
[10] H.O. Lancaster, Correlation and complete dependence of random variables, Ann. Math. Statist. 34 (1963) 1315–1321. [Crossref] | Zbl 0121.35905
[11] P. Mikusiński, H. Sherwood, M.D. Taylor, Probabilistic interpretations of copulas and their convex sums, in: G. Dall’Aglio, S. Kotz, G. Salinetti (Eds.), Advances in Probability Distributionswith GivenMarginals: Beyond the Copulas, Kluwer Dordrecht. 67 (1991) 95–112. | Zbl 0733.60023
[12] P. Mikusiński, H. Sherwood, M.D. Taylor, Shuffles of min, Stochastica 13 (1992) 61–74. | Zbl 0768.60017
[13] R.B. Nelsen, An Introduction to Copulas, second ed., Springer Verlag, 2006. | Zbl 1152.62030
[14] K. Pearson, D. Heron, On theories of association, Biometrika 9(1/2) (1913) 159–315. [Crossref]
[15] E.T. Olsen, W.F. Darsow, B. Nguyen, Copulas and Markov operators, Lecture Notes-Monograph Series 28 (1996) 244–259.
[16] A. Rényi, On measures of dependence, Acta. Math. Acad. Sci. Hungar. 10 (1959) 441–451. [Crossref] | Zbl 0091.14403
[17] P. Ruankong, T. Santiwipanont, S. Sumetkijakan, Shuffles of copulas and a new measure of dependence, J.Math. Anal. Appl. 398(1) (2013) 398–402. | Zbl 06112322
[18] B. Schweizer, E.F. Wolff, On nonparametric measures of dependence for random variables, Ann. Statist. 9 (1981) 879–885. [Crossref] | Zbl 0468.62012
[19] K.F. Siburg, P.A. Stoimenov, A scalar product for copulas, J. Math. Anal. Appl. 344 (2008) 429–439. | Zbl 1151.46023
[20] K.F. Siburg, P.A. Stoimenov, A measure of mutual complete dependence, Metrika 71 (2009) 239–251. [Crossref][WoS] | Zbl 1182.62124
[21] A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959) 229–231. | Zbl 0100.14202
[22] W. Trutschnig, On a strong metric on the space of copulas and its induced dependence measure, J. Math. Anal. Appl. 384 (2011) 690–705. [WoS] | Zbl 1252.46019
[23] W. Trutschnig, On Cesaro convergence of iterates of the star product of copulas, Stat. Prob. Letters 83 (2013) 357–365. [WoS][Crossref] | Zbl 1282.62148
[24] Y. Zheng, J. Yang, J.Z. Huang, Approximation of bivariate copulas by patched bivariate Fréchet copulas, Insurance Math. Econ. 48 (2011) 246–256. [Crossref] | Zbl 1232.62081