Forecasting time series with multivariate copulas
Clarence Simard ; Bruno Rémillard
Dependence Modeling, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

In this paper we present a forecasting method for time series using copula-based models for multivariate time series. We study how the performance of the predictions evolves when changing the strength of the different possible dependencies, as well as the structure of the dependence. We also look at the impact of the marginal distributions. The impact of estimation errors on the performance of the predictions is also considered. In all the experiments, we compare predictions from our multivariate method with predictions from the univariate version which has been introduced in the literature recently. To simplify implementation, a test of independence between univariate Markovian time series is proposed. Finally, we illustrate the methodology by a practical implementation with financial data.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271015
@article{bwmeta1.element.doi-10_1515_demo-2015-0005,
     author = {Clarence Simard and Bruno R\'emillard},
     title = {Forecasting time series with multivariate copulas},
     journal = {Dependence Modeling},
     volume = {3},
     year = {2015},
     zbl = {1328.62546},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0005}
}
Clarence Simard; Bruno Rémillard. Forecasting time series with multivariate copulas. Dependence Modeling, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0005/

[1] Aas, K., Czado, C., Frigessi, A., and Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance Math. Econom., 44(2), 182–198. | Zbl 1165.60009

[2] Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Automatic Control, AC-19(6), 716–723. | Zbl 0314.62039

[3] Andersen, T., Bollerslev, T., and Diebold, F. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. Rev. Econ. Stat., 89(4), 701–720. [Crossref]

[4] Andersen, T., Bollerslev, T., Diebold, F., and Labys, P. (2001). The distribution of realized exchange rate volatility. J. Amer. Statist. Assoc., 96(453), 42–55. [Crossref] | Zbl 1015.62107

[5] Beare, B. (2010). Copulas and temporal dependence. Econometrica, 78(1), 395–410. [WoS][Crossref] | Zbl 1202.91271

[6] Beare, B. K. and Seo, J. (2015). Vine copula specifications for stationary multivariate Markov chains. J. Time. Ser. Anal., 36, 228–246. [WoS][Crossref] | Zbl 1320.62224

[7] Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. Springer-Verlag, New York, second edition. | Zbl 0709.62080

[8] Bush, T., Christensen, B., and M.Ø., N. (2011). The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets. J. Econometrics, 60(1), 48–57. [Crossref]

[9] Chen, X. and Fan, Y. (2006). Estimation of copula-based semiparametric model time series models. J. Econometrics, 130(2), 307–335. | Zbl 1337.62201

[10] Corsi, F. (2009). A simple approximate long-memory model of realized volatility. J. Financ. Econ., 7(2), 174–196.

[11] Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. J. Bus. Econom. Statist., 13(3), 253–263.

[12] Duchesne, P., Ghoudi, K., and Rémillard, B. (2012). On testing for independence between the innovations of several time series. Canad. J. Statist., 40(3), 447–479. | Zbl 1333.62208

[13] Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. Economet. Theor., 11(1),122–150. [Crossref]

[14] Erhardt, T. M., Czado, C., and Schepsmeier, U. (2014). R-vine models for spatial time series with an application to daily mean temperature. Biometrics, to appear. DOI:10.1111/biom.12279 [WoS][Crossref] | Zbl 06528641

[15] Fang, H.-B., Fang, K.-T., and Kotz, S. (2002). The meta-elliptical distributions with given marginals. J. Multivariate Anal., 82(1), 1–16. [Crossref] | Zbl 1002.62016

[16] Genest, C., Gendron, M., and Bourdeau-Brien, M. (2009). The advent of copula in finance. Europ. J. Financ., 15(7-8), 609–618.

[17] Genest, C. and Rémillard, B. (2004). Tests of independence or randomness based on the empirical copula process. Test, 13(2), 335–369. [Crossref] | Zbl 1069.62039

[18] Ghoudi, K. and Rémillard, B. (2004). Empirical processes based on pseudo-observations. II. The multivariate case. In Asymptotic Methods in Stochastics, 381–406. Amer. Math. Soc., Providence, RI. | Zbl 1079.60024

[19] Kurowicka, D. and Joe, H., editors (2011). Dependence Modeling. Vine Copula Handbook. World Scientific, Hackensack, NJ.

[20] Martens, M. and van Dijk, D. (2006). Measuring volatility with the realized range. J. Econometrics, 138(1), 181–207. [WoS] | Zbl 06577509

[21] Nelsen, R. B. (1999). An introduction to copulas. Springer-Verlag, New York. | Zbl 0909.62052

[22] Rémillard, B. (2013). Statistical Methods For Financial Engineering. CRC Press, Boca Raton, FL. | Zbl 1273.91010

[23] Rémillard, B., Papageorgiou, N., and Soustra, F. (2012). Copula-based semiparametric models for multivariate time series. J. Multivariate Anal., 110, 30–42. [WoS][Crossref] | Zbl 1281.62136

[24] Rio, E. (2000). Théorie asymptotique des processus aléatoires faiblement dépendants. Springer-Verlag, Berlin.

[25] Smith, M. (2015). Copula modelling of dependence in multivariate time series. Int. J. Forecasting, to appear. DOI:10.1016/j.ijforecast.2014.04.003 [WoS][Crossref]

[26] Sokolinskiy, O. and Van Dijk, D. (2011). Forecasting volatility with copula-based time series models. Technical report, Tinbergen Institute Discussion Paper.

[27] Soustra, F. (2006). Pricing of synthetic CDO tranches, analysis of base correlations and an introduction to dynamic copulas. Master thesis, HEC Montréal.

[28] Zhang, L., Mykland, P., and Aït-Sahalia, Y. (2005). A tale of two time scales: Determining integrated volatility with noisy high-frequency data. J. Amer. Statist. Assoc., 100(472), 1394–1414. [Crossref] | Zbl 1117.62461

[29] Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates. J. Bus. Econom. Statist., 14(1), 45–52.