On the construction of low-parametric families of min-stable multivariate exponential distributions in large dimensions
German Bernhart ; Jan-Frederik Mai ; Matthias Scherer
Dependence Modeling, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

Min-stable multivariate exponential (MSMVE) distributions constitute an important family of distributions, among others due to their relation to extreme-value distributions. Being true multivariate exponential models, they also represent a natural choicewhen modeling default times in credit portfolios. Despite being well-studied on an abstract level, the number of known parametric families is small. Furthermore, for most families only implicit stochastic representations are known. The present paper develops new parametric families of MSMVE distributions in arbitrary dimensions. Furthermore, a convenient stochastic representation is stated for such models, which is helpful with regard to sampling strategies.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271008
@article{bwmeta1.element.doi-10_1515_demo-2015-0003,
     author = {German Bernhart and Jan-Frederik Mai and Matthias Scherer},
     title = {On the construction of low-parametric families of min-stable multivariate exponential distributions in large dimensions},
     journal = {Dependence Modeling},
     volume = {3},
     year = {2015},
     zbl = {1323.60028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0003}
}
German Bernhart; Jan-Frederik Mai; Matthias Scherer. On the construction of low-parametric families of min-stable multivariate exponential distributions in large dimensions. Dependence Modeling, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0003/

[1] Ballani, F. and Schlather, M. (2011). A construction principle for multivariate extreme value distributions. Biometrika, 98(3):633-645. [Crossref][WoS] | Zbl 1230.62073

[2] Barndorff-Nielsen, O. E.,Maejima, M., and Sato, K.-I. (2006a). Infinite divisibility for stochastic processes and time change. J. Theoret. Probab., 19(2):411-446. | Zbl 1111.60028

[3] Barndorff-Nielsen, O. E.,Maejima, M., and Sato, K.-I. (2006b). Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations. Bernoulli, 12(1):1-33. | Zbl 1102.60013

[4] Barndorff-Nielsen, O. E., Rosinski, J., and Thorbjornsen, S. (2008). General Y-transformations. Alea, 4:131-165.

[5] Brigo, D. and Chourdakis, K. (2012). Consistent single- and multi-step sampling of multivariate arrival times: A characterization of self-chaining copulas. Working paper, available at arxiv.org/abs/1204.2090.

[6] Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula Methods in Finance. John Wiley & Sons, Chichester. | Zbl 1163.62081

[7] De Haan, L. (1984). A spectral representation for max-stable processes. Ann. Probab., 12(4):1194-1204. [Crossref] | Zbl 0597.60050

[8] De Haan, L. and Pickands, J. (1986). Stationary min-stable stochastic processes. Probab. Theory Rel. Fields, 72(4):477-492. [Crossref] | Zbl 0577.60034

[9] De Haan, L. and Resnick, S. (1977). Limit theory for multivariate sample extremes. Z. Wahrsch. verw. Gebiete, 40(4):317-337. | Zbl 0375.60031

[10] Durante, F. and Salvadori, G. (2010). On the construction of multivariate extreme value models via copulas. Environmetrics, 21(2):143-161.

[11] Es-Sebaiy, K. and Ouknine, Y. (2007). How rich is the class of processes which are infinitely divisible with respect to time? Statist. Probab. Lett., 78(5):537-547. [WoS] | Zbl 1216.60042

[12] Esary, J. D. and Marshall, A. W. (1974). Multivariate distributions with exponential minimums. Ann. Statist., 2:84-98. [Crossref] | Zbl 0293.60017

[13] Fougères, A.-L., Nolan, J. P., and Rootzén, H. (2009). Models for dependent extremes using stable mixtures. Scand. J. Stat., 36(1):42-59. | Zbl 1195.62067

[14] Gudendorf, G. and Segers, J. (2010). Extreme-value copulas. In Jaworski, P., Durante, F., Härdle,W. K., and Rychlik, T., editors, Copula Theory and its Applications, 127-145. Springer, Berlin. | Zbl 06085266

[15] Gumbel, E. J. and Goldstein, N. (1964). Analysis of empirical bivariate extremal distributions. J. Amer. Statist. Assoc., 59(307):794-816. | Zbl 0129.11404

[16] Hofmann, D. (2009). Characterization of the D-Norm Corresponding to aMultivariate Extreme Value Distribution. PhD thesis, Universität Würzburg, http://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/3454.

[17] Hürlimann,W. (2003). Hutchinson-Lai’s conjecture for bivariate extreme value copulas. Statist. Probab. Lett., 61(2):191-198. | Zbl 1101.62340

[18] Jiménez, J. R., Villa-Diharce, E., and Flores, M. (2001). Nonparametric estimation of the dependence function in bivariate extreme value distributions. J. Multivariate Anal., 76(2):159-191. [WoS][Crossref] | Zbl 0998.62050

[19] Joe, H. (1990). Families of min-stable multivariate exponential and multivariate extreme value distributions. Statist. Probab. Lett., 9(1):75-81. | Zbl 0686.62035

[20] Joe, H. (1997). Multivariate Models and Multivariate Dependence Concepts. Chapman & Hall/CRC. | Zbl 0990.62517

[21] Joe, H. (2014). Dependence Modeling with Copulas. Chapman & Hall/CRC. | Zbl 06345338

[22] Jurek, Z. J. (1985). Relations between the s-selfdecomposable and selfdecomposable measures. Ann. Probab., 13(2):592- 608. [Crossref] | Zbl 0569.60011

[23] Klenke, A. (2006). Wahrscheinlichkeitstheorie. Springer, Berlin.

[24] Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications. Imperial College Press, London. | Zbl 0960.62051

[25] Longin, F. and Solnik, B. (2001). Extreme correlation of international equity markets. J. Finance, 56(2):649-676.

[26] Mai, J.-F. (2014). Mutivariate exponential distributions with latent factor structure and related topics. Habilitation Thesis, Technische Universität München, https://mediatum.ub.tum.de/node?id=1236170.

[27] Mai, J.-F. and Scherer, M. (2014). Characterization of extendible distributions with exponential minima via processes that are infinitely divisible with respect to time. Extremes, 17(1):77-95. | Zbl 1310.62072

[28] Mai, J.-F., Scherer, M., and Zagst, R. (2013). CIID frailty models and implied copulas. In Jaworski, P., Durante, F., and Härdle, W. K., editors, Copulae in Mathematical and Quantitative Finance, 201-230. Springer, Berlin. | Zbl 1273.62070

[29] Mansuy, R. (2005). On processes which are infinitely divisible with respect to time. Working paper, arxiv.org/abs/math/ 0504408.

[30] Molchanov, I. (2008). Convex geometry of max-stable distributions. Extremes, 11(3):235-259. | Zbl 1164.60003

[31] Nelsen, R. B. (2006). An Introduction to Copulas. Springer, New York. | Zbl 1152.62030

[32] Pickands, J. (1989).Multivariate negative exponential and extreme value distributions. In Hüsler, J. and Reiss, R.-D., editors, Extreme Value Theory, 262-274. Springer, New York. | Zbl 0672.62065

[33] Poon, S.-H., Rockinger, M., and Tawn, J. (2004). Extreme value dependence in financial markets: Diagnostics, models, and financial implications. Rev. Financ. Stud., 17(2):581-610. [Crossref]

[34] Rajput, B. S. and Rosinski, J. (1989). Spectral representations of infinitely divisible processes. Probab. Theory Rel. Fields, 82(3):451-487. [Crossref] | Zbl 0659.60078

[35] Resnick, S. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York. | Zbl 0633.60001

[36] Ressel, P. (2013). Homogeneous distributions - and a spectral representation of classical mean values and stable tail dependence functions. J. Multivariate Anal., 117:246-256. [Crossref][WoS] | Zbl 1283.60021

[37] Sato, K.-I. (1999). Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge. | Zbl 0973.60001

[38] Sato, K.-I. (2004). Stochastic integrals in additive processes and application to semi-Lévy processes. Osaka J. Math., 41(1):211-236. | Zbl 1050.60054

[39] Schilling, R., Song, R., and Vondracek, Z. (2010). Bernstein Functions. De Gruyter, Berlin. | Zbl 1197.33002

[40] Schönbucher, P. J. and Schubert, D. (2001). Copula-dependent defaults in intensity models. Working paper, http://ssrn. com/abstract=301968.

[41] Segers, J. (2012). Max-stable models for multivariate extremes. REVSTAT, 10(1):61-82. | Zbl 1297.62121

[42] Vasicek, O. A. (2002). Loan portfolio value. Risk, 160-162.

[43] Williamson, R. (1956). Multiply monotone functions and their Laplace transforms. Duke Math. J., 23(2):189-207. [Crossref] | Zbl 0070.28501