Weighted integral Hankel operators with continuous spectrum
Emilio Fedele ; Alexander Pushnitski
Concrete Operators, Tome 4 (2017), p. 121-129 / Harvested from The Polish Digital Mathematics Library

Using the Kato-Rosenblum theorem, we describe the absolutely continuous spectrum of a class of weighted integral Hankel operators in L2(ℝ+). These self-adjoint operators generalise the explicitly diagonalisable operator with the integral kernel sαtα(s + t)-1-2α, where α > -1/2. Our analysis can be considered as an extension of J. Howland’s 1992 paper which dealt with the unweighted case, corresponding to α = 0.

Publié le : 2017-01-01
EUDML-ID : urn:eudml:doc:288550
@article{bwmeta1.element.doi-10_1515_conop-2017-0009,
     author = {Emilio Fedele and Alexander Pushnitski},
     title = {Weighted integral Hankel operators with continuous spectrum},
     journal = {Concrete Operators},
     volume = {4},
     year = {2017},
     pages = {121-129},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_conop-2017-0009}
}
Emilio Fedele; Alexander Pushnitski. Weighted integral Hankel operators with continuous spectrum. Concrete Operators, Tome 4 (2017) pp. 121-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_conop-2017-0009/