Invertible and normal composition operators on the Hilbert Hardy space of a half–plane
Valentin Matache
Concrete Operators, Tome 3 (2016), p. 77-84 / Harvested from The Polish Digital Mathematics Library

Operators on function spaces of form Cɸf = f ∘ ɸ, where ɸ is a fixed map are called composition operators with symbol ɸ. We study such operators acting on the Hilbert Hardy space over the right half-plane and characterize the situations when they are invertible, Fredholm, unitary, and Hermitian. We determine the normal composition operators with inner, respectively with Möbius symbol. In select cases, we calculate their spectra, essential spectra, and numerical ranges.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:277103
@article{bwmeta1.element.doi-10_1515_conop-2016-0009,
     author = {Valentin Matache},
     title = {Invertible and normal composition operators on the Hilbert Hardy space of a half--plane},
     journal = {Concrete Operators},
     volume = {3},
     year = {2016},
     pages = {77-84},
     zbl = {1358.47014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_conop-2016-0009}
}
Valentin Matache. Invertible and normal composition operators on the Hilbert Hardy space of a half–plane. Concrete Operators, Tome 3 (2016) pp. 77-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_conop-2016-0009/

[1] Bourdon P. S., Matache V., Shapiro J. H., On convergence to the Denjoy-Wolff point, Illinois J. Math. 49 (2005), no. 2, 405-430. | Zbl 1088.30015

[2] Bourdon P. S., Narayan S. K., Normal weighted composition operators on the Hardy space H2.U/, J. Math. Anal. Appl. 367(2010), 278-286. | Zbl 1195.47013

[3] Cowen, C. C., Ko, E., Hermitian weighted composition operators on H2, Trans. Amer. Math. Soc., 362(2010), no. 11, 5771-5801. | Zbl 1213.47034

[4] Duren P., Theory of Hp Spaces, Pure and Applied Mathematics, Vol. 38 Academic Press, New York–London 1970.

[5] Elliott S., Jury M. T., Composition operators on Hardy spaces of a half-plane, Bull. Lond. Math. Soc. 44 (2012), no. 3, 489-495. | Zbl 1248.47025

[6] Gunatillake G., Invertible weighted composition operators, J. Funct. Anal. 261 (2011), no. 3, 831-860. | Zbl 1218.47037

[7] Hoffman K., Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962.

[8] Hyvarinen O., Lindstrom M., Nieminen I., Saukko E., Spectra of weighted composition operators with automorphic symbols, J. Funct. Anal. 265 (2013), 1749-1777. | Zbl 1325.47054

[9] Matache V., Composition operators on Hp of the upper half-plane, An. Univ. Timis¸oara Ser. S¸ tiin¸t. Mat. 27 (1989), no. 1, 63-66. | Zbl 0791.47031

[10] Matache V., Notes on hypercyclic operators, Acta Sci. Math. (Széged) 58(1993), no. 1-4, 401-410. | Zbl 0795.47002

[11] Matache V., Composition operators on Hardy spaces of a half-plane, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1483-1491. | Zbl 0916.47022

[12] Matache V., Weighted composition operators on H2 and applications, Complex Anal. Oper. Theory 2 (2008), no. 1, 169-197. | Zbl 1158.47019

[13] Matache V., Numerical ranges of composition operators with inner symbols, Rocky Mountain J. Math. 42(2012), no. 1, 235-249. | Zbl 1244.47004

[14] Matache V., Isometric weighted composition operators, New York J. Math. 20(2014), 711-726. | Zbl 1298.47037

[15] Nordgren E. A., Composition operators, Canad. J. Math. 20(1968), 442-449. | Zbl 0161.34703