In this paper we study spaces of holomorphic functions on the right half-plane R, that we denote by Mpω, whose growth conditions are given in terms of a translation invariant measure ω on the closed half-plane R. Such a measure has the form ω = ν ⊗ m, where m is the Lebesgue measure on R and ν is a regular Borel measure on [0, +∞). We call these spaces generalized Hardy–Bergman spaces on the half-plane R. We study in particular the case of ν purely atomic, with point masses on an arithmetic progression on [0, +∞). We obtain a Paley–Wiener theorem for M2ω, and consequentely the expression for its reproducing kernel. We study the growth of functions in such space and in particular show that Mpω contains functions of order 1. Moreover, we prove that the orthogonal projection from Lp(R,dω) into Mpω is unbounded for p ≠ 2. Furthermore, we compare the spaces Mpω with the classical Hardy and Bergman spaces, and some other Hardy– Bergman-type spaces introduced more recently.
@article{bwmeta1.element.doi-10_1515_conop-2016-0008, author = {Marco M. Peloso and Maura Salvatori}, title = {On some spaces of holomorphic functions of exponential growth on a half-plane}, journal = {Concrete Operators}, volume = {3}, year = {2016}, pages = {52-67}, zbl = {1348.30036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_conop-2016-0008} }
Marco M. Peloso; Maura Salvatori. On some spaces of holomorphic functions of exponential growth on a half-plane. Concrete Operators, Tome 3 (2016) pp. 52-67. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_conop-2016-0008/
[1] Butzer, Paul L. and Jansche, Stefan, A self-contained approach to Mellin transform analysis for square integrable functions; applications, Integral Transform. Spec. Funct., 8, 1999, 3-4, 175–198 | Zbl 0961.44005
[2] Chalendar, Isabelle and Partington, Jonathan R., Norm estimates for weighted composition operators on spaces of holomorphic functions, Complex Anal. Oper. Theory, 8, 2014, 5, 1087–1095 | Zbl 1307.47030
[3] Dostani´c, Milutin R., Unboundedness of the Bergman projections on Lp spaces with exponential weights, Proc. Edinb. Math. Soc. (2), 47, 2004, 1, 111–117
[4] Duren, Peter and Gallardo-Gutiérrez, Eva A. and Montes-Rodríguez, Alfonso, A Paley-Wiener theorem for Bergman spaces with application to invariant subspaces, Bull. Lond. Math. Soc., 39, 2007, 3, 459–466 | Zbl 1196.30046
[5] Fuchs, W. H. J., A generalization of Carlson’s theorem, J. London Math. Soc., 21, 1946, 106–110 | Zbl 0060.22107
[6] Fuchs, W. H. J., On the closure of {e-t tav}, Proc. Cambridge Philos. Soc., 42, 1946, 91–105 | Zbl 0061.13401
[7] Garrigós, Gustavo, Generalized Hardy spaces on tube domains over cones, Colloq. Math., 90, 2001, 2, 213–251 | Zbl 0999.42014
[8] Harper, Zen, Boundedness of convolution operators and input-output maps between weighted spaces, Complex Anal. Oper. Theory, 3, 2009, 1, 113–146 | Zbl 1172.44002
[9] Harper, Zen, Laplace transform representations and Paley-Wiener theorems for functions on vertical strips, Doc. Math., 15, 2010, 235–254 | Zbl 1203.30040
[10] Jacob, Birgit and Partington, Jonathan R. and Pott, Sandra, On Laplace-Carleson embedding theorems, J. Funct. Anal., 264, 2013, 3, 783–814 | Zbl 1267.46040
[11] Jacob, Birgit and Partington, Jonathan R. and Pott, Sandra, Weighted interpolation in Paley-Wiener spaces and finite-time controllability, J. Funct. Anal., 259, 2010, 9, 2424–2436 | Zbl 1206.47020
[12] Krantz, Steven G. and Peloso, Marco M., The Bergman kernel and projection on non-smooth worm domains, Houston J. Math., 34, 2008, 3, 873–950 | Zbl 1161.32016
[13] Krantz, Steven G. and Peloso, Marco M. and Caterina Stoppato, Bergman kernel and projection on the unbounded Diederich– Fornæss worm domain, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2015 | Zbl 06688441
[14] Krantz, Steven G. and Peloso, Marco M. and Caterina Stoppato, Completeness on the worm domain and the Müntz–Szász problem for the Bergman space, preprint, 2015 | Zbl 06688441
[15] Kriete, Thomas L. and Trutt, David, On the Cesàro operator, Indiana Univ. Math. J., 24, 1974/75, 197–214
[16] Kriete, T. L. and Trutt, David, The Cesàro operator in l2 is subnormal, Amer. J. Math., 93, 1971, 215–225 | Zbl 0235.46022
[17] Lebedev, N. N., Special functions and their applications, Dover Publications, Inc., New York, 1972, xii+308 | Zbl 0271.33001
[18] Lukacs, Eugene, Some extensions of a theorem of Marcinkiewicz, Pacific J. Math., 8, 1958, 487–501 | Zbl 0105.33301
[19] Lukacs, Eugene, Les fonctions caractéristiques analytiques, Ann. Inst. H. Poincaré, 15, 1957, 217–251 | Zbl 0082.12802
[20] Müntz, C. H., Über den Approximationssatz con Weierstrass, in: H. A. Schwarz’s Festschrift, Berlin, 1914, 303-312
[21] Paley, Raymond E. A. C. and Wiener, Norbert, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, 19, American Mathematical Society, Providence, RI, 1934, x+184 | Zbl 0011.01601
[22] Peláez, José Ángel and Rättyä, Jouni, Embedding theorems for Bergman spaces via harmonic analysis, Math. Ann., 362, 2015, 1-2, 205–239 | Zbl 1333.46032
[23] Peláez, José Ángel and Rättyä, Jouni, Two weight inequality for Bergman projection, J. Math. Pures Appl. (9), 105, 2016, 1, 102–130 | Zbl 1337.30064
[24] Peláez, José Ángel and Rättyä, Jouni, Trace class criteria for Toeplitz and composition operators on small Bergman spaces, Adv. Math., 293, 2016, 606–643 | Zbl 06559623
[25] Peloso, Marco M. and Salvatori, Maura, Functions of exponential growth on a half-plane, sets of uniqueness and the Müntz– Szász problem for the Bergman space, preprint, 2015 | Zbl 1348.30036
[26] Sedletskii, A. M., Complete and incomplete systems of exponentials in spaces with a power weight on a half-line, Moscow Univ. Math. Bull., 69, 2014, 2, 73–76 | Zbl 1315.42004
[27] Szász, Otto, Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen, Math. Ann., 77, 1916, 4, 482– 496 | Zbl 46.0419.03